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Mathematical introduction






Chapter 1

Nature of astronomical
information

The information we receive from Cosmos is predominantly in the form of
electromagnetic radiation. An incoming plain wave can be characterized by
the following quantities:

n (direction), X (wavelength), polarization.

These physical quantities determine basically the possible observational pro-
grams:

1. Position = Astrometry

2. Distr. of photons with A = Spectroscopy

3. Number of photons = Photometry

4. Polarization = Polarimetry

5. Time of observation = variability

6. Distr. of photons in Data space = Statistical studies

In the reality, however, not all these quantities can be measured simulta-
neously. Restriction is imposed by the existing instrumentation.

By observing and storing the photons of the incoming radiation typically
we get a data cube defined by (o, d, \). The measuring instrument has some
finite resolution in respect to the parameters of the incoming radiation. Con-
sequently, the data cube can be divided into cells of size of the resolution.
The astronomical objects can be characterized by isolated domains on the
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«, 0 plane. A real object can be more extended than one pixel in this plane.
An object is called point source if it occupies an isolated pixel.

Each pixel in the «, ¢ plane can have a set of non-empty cells according
to the different A values. A list of non-empty pixels can be ordered into a
matrix form having columns of properties («, d, and the set of As) and rows
referring to the serial number of objects. This structure is the 'Data Matrix’
which is the input of many multivariate statistical procedures.

Table 1.1: Structure of the Data Matrix: m means the number of properties
and n runs over the cases.

o 01 A1 A2 o Aim
ag 0y Ao Aaa o Aoy
Qp, 671 >\11 )\12 s e )\nm

1.1 Brief summary of multivariate methods

1.1.1 Factor Analysis

A common problem in the multivariate statistics whether the stochastic vari-
ables described by different properties are statistically independent or can be
described by a less number of physically important quantities behind the data
observed. The solution of this problem is the subject of the factor analysis.

Factor analysis assumes a linear relationship between the observed and
the background variables. The value (factor scores) and number of back-
ground variables, along with the coefficients of the relationship (factor load-
ings) are outputs of the analysis. The basic model of factor analysis can be
written in the following form:

X; =3 apFp +uy ; (J=1,--,p). (1.1)
k=1

In the formula above X; mean the observed variables, p the no. of prop-
erties, m the no. of hidden factors (normally m < p), a;; the factor loadings,
F}, the factor scores, and u; called individual factors. The individual factors
represent that part of the observed variables which are not explained by the

common factors.
A common way to solve the factor problem uses the Principal Compo-
nents Analysis (PCA). PCA has many similarity with the factor analysis,
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however, its basic idea is different. Factor analysis assumes that behind
the observed ones there are hidden variables, less in number, responsible for
the correlation between the observed ones. The PCA looks for uncorrelated
background variables from which one obtains the observed variables by linear
combination. The number of PCs equal to those of the the observed vari-
ables. In order to compute the PCs one have to solve the following eigenvalue
problem:

Ra = \a (1.2)

where R, a and A mean the correlation matrix of the observed variables,
its eigenvector and eigenvalue, respectively. The components of the a eigen-
vectors gives the coefficients of the linear relationship between the PCs and
the observed variables. The PC belonging to the biggest eigenvalue of R
gives the most significant contribution to the observed variables. The PCs
can be ordered according the size of the eigenvalues. In most cases the de-
fault solution of the factor problem is the PCA in the statistical software
packages (BMDP, SPSS; ...). Normally, if the observed variables can be de-
scribed by a less number of background variables (the starting assumption
of the factor model) there is a small number of PCs having large eigenvalue
and their linear combination reproduce fairly well the observed quantities.
The number of large eigenvalues gives an idea on the number of the hidden
factors. Keeping only those PCs having large eigenvalues offers a solution
for the factor model. This technique has a very wide application in the dif-
ferent branches of observational sciences. For the astronomical context see
Murtagh & Heck (1987).

The factor model can be used successfully for separating cosmic structures
physically not related to each other but projected by chance on the same
area of the sky. We will return to the details later on when dealing with case
studies.

1.1.2 Cluster Analysis

Factor analysis is dealing with relationships between properties when de-
scribing the mutual correlations of observed quantities by hidden background
variables. One may ask, however, for the relationship between cases. In order
to study the relationship between cases one have to introduce some measure
of similarity. Two cases are similar if their properties, the value of their
observed quantities, are close to each other.

”Similarity”, or alternatively ”distance” between [ and k cases, is a func-
tion of two X jl-, X ]k set of observed quantities (j is running over the properties
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describing a given case). Conventionally, if [ = k, i. e. the two cases are
identical, the similarity a(X}, XF) = 1 and the distance d(X}, X¥) = 0. The
mutual similarities or distances of cases form a similarity or distance matrix.

Forming groups from cases having similar properties according to the
measures of similarities and the distances is the task of cluster analysis.
There are several methods for searching clusters in multivariate data. There
is no room here to enter into the details. For the astronomical context see
again (Murtagh & Heck , 1987). Typical application of this procedure is
the recognition of celestial areas with similar properties, based on multicolor
observations. The procedure of clustering in this case is a searching for pixels
on the images taken in different wavelengths but having similar intensities in
the given colors.

In the following we try to demonstrate how these procedures are working
in real cases.



Chapter 2

The basic equation of stellar
statistics

2.1 Formulation of the problem

It is a basic problem in astronomy that we can not measure quantities di-
rectly, e.g. linear extension, space velocity or absolute brightness. Instead,
we can get only their distance-dependent apparent values (angular diameter,
proper motion, apparent brightness). In general, there exists a relationship
in the form of

e=e(E,r) | (2.1)

where e, E and r are the measured value, the true value, and the distance,
respectively. Following the law of full probabilities we may write:

ole) = [ olelr)g(rydr . (2:2)

In this expression ¢(e), ¢(e|r) and g(r) are the probability density of
e, the conditional probability of e, given r, and the probability density of r,
respectively. Since the measured distance-dependent values can be written in
the form e = E3(r) in the cases we consider, where 3(r) = r~" if we neglected
interstellar absorption and cosmological effects, one can reduce e = e(r, F)
to z = x + y with a suitable logarithmic transformation. (n = 1 for angular
diameters and proper motions while n = 2 for apparent brightness).

Supposing the statistical independence of y and z we get the convolution
equation between the probability densities of these variables:

hz) = [ £z = edz (2.3)

13
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This equation is also called the basic equation of stellar statistics.

2.2 Solutions of the basic equation

The task is to find g(y) if h(z) and f(z) are given. The convolution equation
is a Fredholm type integral equation. Its formal solution can be obtained
by Fourier transformation. This solution has little practical use because
we generally know only a statistical sample drawn from h(z). There are
several methods for obtaining the moments of ¢(y), its approximation in form
of orthogonal series, or its numerical values at discrete points. Particular
attention will be devoted to computing the maximum likelihood estimate of
the discrete values of g(y) via the EM algorithm.

2.2.1 Eddington’s solution

Let us assume that f(z) and g(y) are the probability densities of the statis-
tically independent random variables x and y.
By definition z = x + ¥y, and the probability density h(z) of the observed
quantity z is connected with f(x) and g(y) by the convolution equation.
Suppose that h(z) has derivatives h*) () of all orders and f(z) has central
moments, pi. We look for the solution of the convolution equation in the

form of a series, ¢g(z) = ivkh(k)(z). (Eddington 1913; uniqueness of the
0

solution and convergence of the series are discussed by Kurth 1952).
Writing

hz) = [ J@)g(z - a)da (2.4)

and expanding ¢ in a Taylor series around z we obtain

i (_k?g(k)(z)da:. (2.5)

k=0

Mo = [ 1o

Integrating term by term and supposing Fz = 0 (F here meaning expec-
tation value) we get

[e%S) _1\k
) =3 09 S (26)

Now we substitute the formal series
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W) =3 3 () 27)

k=0 m=0
Introducing n = k£ 4+ m, the double sum can be written in the form

o 1 () X (=DF
h(z) = Z h z_: Yk~ py M- (2.8)

The equation is satisfied if on the right side the coefficients of h(™ except
n = 0 equal zero. This means

Yo = 1
i ﬂ =0 n+#0 (2.9)
k:o%_k il pr = U, . .

Based on these equalities the coefficients 7, of the formal series can be
expressed by the central moments py of f

Yo =1 ;

M =0,

Y2 = —%Mz = —%UQ7

73 = %Ms,

Vi = —opfa+ p3,  etc (2.10)

For small values of puy = 02 the above equalities suggest approximating
the solution g(y) by the function

h(y) — 50°h' (). (2.11)

In real cases, however, it is rather inconvenient to compute the second
derivative k" (y) numerically. One may therefore replace it by the ratio

a?[h(y +a) + h(y — a) — 2h(y)], (2.12)

where « is a small positive number. As shown by the Taylor theorem,
the difference between k" and the above formula is of the fourth order in
a. Using this expression for the second derivative one obtain the following
approximation

00) = y) — 5TV lhly + ) + hly - ) = b)) (213)
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In an analogous way one can derive a ”five-point formula”, a ”seven point
formula” etc. in order to get the higher order derivatives. In applications,
however, derivatives of order higher than 4 are not used because of the in-
creasing uncertainty of the estimation of moments with increasing order.

2.2.2 Solution by Fourier transformation

A formally simple method of analytic solution of the basic equation is the
Fourier transform one. Taking the Fourier transform of both sides of the
equation yields

hv) = Vr f(v) §(v) (2.14)

where v is the frequency. It is easy to get from this equation an analytic
solution
Yoo n
g(y) = L / Mei”ydu. (2.15)
2n 1 f(v)

In real cases, however, h(z) is known only in terms of a sample drawn
from it and one may approximate the original probability density function
with an arbitrarily small error as the sample size n goes to infinity. A given
sample size sets a bound within which the different solutions of the basic
equation are statistically indistinguishable.

Suppose we have a solution obtained by applying the above formula. One
may add to g(v) a §(v) function in the frequency domain which has a constant
value in a {1y, vy + Arv} region and 0 otherwise. Since the existence of the
Fourier transformation requires [ f(v)%dv < oo , V21 f(v) [§(v) + 6(v)]
approaches arbitrarily closely to A(v), and after Fourier transformation h(z),
as 1y goes to infinity.

The Fourier counterpart of () is a high frequency oscillating function
which one may add to the g(y) solution without violating the statistical
bound around h(z), i.e. [[g(v) + 6(v)]exp(iva)dr may also be accepted as
a solution. Increasing the sample size n decreases the statistical bound as
v/n. Haldsz (1984) showed, however, that the bound around the g(y) solution
decreases only as log(n) at the same time.

An obvious way out of this difficulty appears to be to apply some cut-off
frequency vy, i.e to integrate in the {—1vp; 19} domain instead of {—o0; +00}.
Proceeding in this way, however, one has some problem in selecting the 'best
value’ for vy which makes this procedure somewhat arbitrary.

Another, at first glance appealing, approach appears to be developing the
h(z) probability density into an orthogonal series:
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0o +oo
h(z) = Z_: arHi(2)a(z), where aj = ;' / Hi(2)h(2)dz. (2.16)

Here the a(z) = exp(—22?/2)/v/2r and Hy(z) are Hermite polynomials.
Applying the Fourier transformation to the Hermite functions Hy(z)a(z) we
obtain

H,(v) = V2r(iv)*a(v). (2.17)

(For further details see Kendall & Stuart, 1973, Voll, pp. 156-157). The
solution of the basic equation by the Fourier method reduces then to solving
the equations

a(z)Hy(z) = /f(z—y)gk(y)dx, ak(y) = \/12—7T / (iy}(s)(y)e”ydy. (2.18)

If these integrals exist, we get the solution in form of g(y) = § argr(y).
k=0

This approach seems to overcome the difficulty of high frequency_ noise oc-
curring in the solution. Computing the higher order a; coefficients, however,
one get increasing uncertainty due to the sampling error of h(z).

2.2.3 Malmquist’s solution

In deriving the basic equation we used the law of full probability. Formally,
based on this theorem, we may write the g(y) solution as

9w) = [ g(yl)h(z)dz (2.19)

where g(y|z) is the conditional probability assuming z, the measured
quantity, is given. If one succeeds in developing ¢(y|z), the solution is given
by computing the integral given above.

In some important cases, as Malmquist (1924, 1936) recognized, the mo-
menta can be developed without knowing g(y|z) itself. Let z be a unit
random variable and h(z) its probability density. It may be represented as

1

V2r

e 27 [1 + 3 Hs(2) + v Ha(2) + .., (2.20)

where
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Y3 = ﬁﬂ&
= (s —3) (2.21)

and pug, pg are the central moments of z of the third and fourth order.
Hy(z) — s are the orthogonal functions of the ”"Hermite’s polynomials” and
the series obtained is called the ” Gram-Charlier series” (cf. Kendall & Stuart,
1973, Vol 1, pp 156-157). If z is not a unit variate the corresponding series
can be obtained using the unit variate ( = (2 — p)/o by the appropriate
transformation. Computing the corresponding moments of the conditional
probability we may develop its Gram-Charlier series and, consequently, the
g(y) solution.

According to Bayes theorem

X(y,2) X 2)
9(ylz = . 2.22
sl = Ix(y,z)dy — h(z) (222)
Following the notations of the first paragraph we may write

X = fle = lals) and glyl) = LI o

In a number of practically important cases f(x) is a gaussian function,
ie. f(r) = exp(—(x — p)?/202)/v/270y. In this case one need not know
g(y) when computing the momenta of the conditional probability g(y|z). By
definition

—(z— y— )?
202

/yg ylo)dz = Y& 9wy (2.24)

—(z—y—m)?

Je *%  gly)dy

—(z—y—p) 202
d = e 0 g(y)dy
o log(h(z)) = 0 (2.25)

and we get

w(z)=z—p+ ogjz log(h(z)). (2.26)

Similar computation gives an expression for the o(z) standard deviation
of g(ylz)
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2 52

o(2)? = o[l + ”20;22 log(h(2))]. (2.27)

Higher order moments can be obtained in an analogous way. Substituting
these moments into the expression of the Gram-Charlier series we get finally
g(y|z) and thus g(y), after performing the integration.

The expressions for the moments of the g(y|z) conditional probability
have important consequences, often overlooked in practical applications. If z
is given by the observations, then the expected value of y is not simply z — p,
where p is the expected value of x, but has to be corrected by the third term
in the expression for p(z). This term is called the Malmquist correction.
If one determined spectroscopically the absolute magnitude M, of a star of
apparent magnitude m the expected value of the distance modulus is not
simply m — My but a value corrected with the Malmquist’s term.(For more
details see Mihalas and Binney (1981)).

2.2.4 Lucy’s algorithm

Lucy (1974) proposed an algorithm for solving the integral equation connect-
ing g(y),g(y|z) and h(z), in an iterative way. Let us assume that at some
stage of the iteration we get ¢ (y), g™ (y|z). The estimate (r + 1) is

") = [ DIz, (2.28)
where, applying Bayes theorem of conditional probabilities,
™) (N h
) _ 9" (y)h(z]y) 59
9" (y]2) h(r)(z) . (2:29)
with
PO) = [ by (v)dy. (2.30)

In the above equalities h(z|y) denotes the conditional probability of z,
assuming y is given. In the case when y and z—y are statistically independent
h(z|ly) = f(z —y). Since g(y) is a probability density it should fulfil the
following relations:

[otwydy =1 and  g(y) =0, (2:31)

One may readily show that this iterative procedure conserves these con-
straints. Eliminating h(z|y) from the above equations we obtain
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(7“-1—1)
g h 7")

(2.32)

from which one can easily recognize that g ’"“) > 0 if ¢(© > 0. Proof
of the conservation of the normalization constraint is straightforward by in-
tegration of g0tV (y) and using the normalizations of the ¢ (y|z) and h(z)
probabilities.

Actually, we know h(z) only in terms of a sample drawn from it and we
might be concerned at the loss of information involved in forming a histogram
from the data in order to get an h(z) estimate for h(z). The sample itself
can be represented by the expression

h(z) = N > 6(z — zn), (2.33)

where N, z, and §(z — z,,) are the size of the sample, the individual mea-
sures and Dirac’s delta function, respectively. Substituting this expression
into the iterative scheme yields

N

SIS S (2.34)

n 1
In practice the computation of g(y) is performed on a set of values y,,
and the iterative scheme can be interpreted as a procedure for estimating the
unknown parameters g,, = g(y,,). In this view the integral expression for
h(") will be approximated by the following sum

ho(z Zgj“)h (2]y;)A (2.35)

The expression obtained in thls way allows us to make a comparison with
the maximum likelihood (ML) estimation of unknown parameters. If we have
a sample of measures z, then the likelihood function can be written in the
form

=3 log(h(=)). (2.36)
i=1
ML means to maximize L(g;) over the given sample subject to the con-

straint Y~ g; = 1. Applying a A Lagrange multiplier one has to maximize the
following function

G(g;;A) = L(gj) + A i (2.37)
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One finds that the multiplier A = —n. Performing the differentiation one
gets equations for g;-s maximizing L(g;)

OZZM—n j=1,..m (2.38)
i=1 3 g;h(zily;)
J

Il
i

and multiplication with g; yields

Zn: gih(zily;) (2.39)

which is identical with the last expression of the iteration scheme when
it converges (g; = gt = ](-T)). Lucy showed that his iteration algorithm
monotonically increases the likelihood and converges to the ML solution.
Numerical experiments showed, however, that the ML solution did not give
the best fit to g(y) while approximating fl(z) This result also presents some
hint for the inherent uncertainties of the solution procedures of the basic

equation.

2.2.5 The EM algorithm

We have mentioned already in previous sections that in a number of practical
cases h(z) is not given analytically but only in a form of a sample drawn
from it. To get the solution, therefore, is rather a statistical estimation
problem than an analytical procedure for solving integral equations. The true
nature of the problem is nonparametric. When one approximates the integral

h(z) = [ h(z|ly)g(y)dy by the sum '21 h(z|y;)g(y;)Ay, containing g(y;) (and
=

maybe y;) as unknown parameters, (Ay can be absorbed into g;) the solution
of the basic equation will be reduced to a parameter estimation problem. The
number of parameters, however, is fully arbitrary. Nevertheless, there is a
minimum number of parameters still giving a solution within the statistical
bound of the sample of h(z).

Replacing the integral with a sum means a discretization of the y statis-
tical variable into y;, j = 1,...,m, values. The y; variable takes these values
with ¢(y;) = g; probabilities. We assume furthermore there exists an unob-
served vector u = (uy, ..., u,,) whose components are all zero except for one
(the j-th) equal to unity indicating the unobserved y; state associated with
the actually observed z. In the case when both the u and z variables were
observed the data would be complete. Their joint probability density would
be
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m

>~ uj[log(g;)+log(h(z|y;)]
p(z,u) = =" : (2.40)

Since the elements of the vector are zero except a certain u;, which is
unity, p(z,u) reduces to g;h(z|y;) if j is given. To perform a ML estimation
we define the likelihood function in the usual form

og(p(zi,ul)) =

" llog(g;) + log(h(zly;))]- (2.41)

L(gla“wjm) = Zz:l
ot

-5

Maximizing the likelihood with respect to the g;-s one should take into
account the constraint }_ g; = 1 with a Lagrange multiplier A. Differentiation
with respect to the parameters g; yields

n_,® .
0= L +x=-"2+), j=1,...m (2.42)
i—1 9j gj

where n; is the frequency of occurrence of the j-th state in the sample.
Summing the equations gives A = —n and substituting it into the equations
we get g; = n;/n as a ML estimation.

In the case of incomplete data one does not have observations of the
states j. Dempster et al. (1977) showed, however, that a ML estimation is
still possible if instead of u we use its conditional expectation assuming that
z is given. Proceeding in this way one may estimate g;-s and the solution
is also the ML solution of the case with complete data specification. By
definition the conditional probability of u is given by

_ew i [P
vlufs) = B2 (u512) = [ Py

Since u; has only two values, 0 or 1, the integral is simplified to the form

(2.43)

and

L pew)  ghlely)
T 3% ajhelus) .

Considering these conditional expected values of the u;-s as complete data
we get the ML estimation in the form

1 1o~ gih(zly))
- ==Y A= (2.45)
" TS L gih(#lyy)

Jj=1
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Suppose we have an estimate gy) of g;; the next approximation g(.”l) can

J

be obtained if we substitute gJ(»T) into the right side and gyﬂ) into the left side.
In this way we recovered Lucy’s algorithm, which is a special case of the EM
algorithm, a more general framework for performing ML estimation in cases
of incomplete data specification. The convergence and general properties of
this algorithm are given by Dempster et al. (1977).

The EM algorithm consists of two steps:

E step: One replaces the unobserved part of the data with the expected
values based on their conditional probabilities assuming that the ob-
served part is given.

M step: Using the complete data specification obtained in this way one
gets the corresponding ML estimation.

Dempster et al. (1977) showed that performing the E and M steps se-
quentially the procedure monotonically converges to the ML solution.

Up to this point the y; parameters have not been included in the parame-
ters to be estimated. The general framework of the EM algorithm, however,
allows this generalization without any difficulty. We show this only in a
special case when h(z|y;) = exp(—(z — yj)Q/Qajz)/\/%aj. In the case of a
gaussian distribution the ML estimation of the y; and o; parameters is the
arithmetic mean of z and (z — y;)?. When we are dealing with incomplete
data these relations correspond to

2B (u;)z)

= (2.46)

E(uj|2)
and
> (2 — y3)2E(uy]2)
ol == : (2.47)
; E(uj|z)

If o is independent of j then we may add a third equation to the equations
for y; and o}

o’ =Y gja?. (2.48)
j=1

These equations could be added to the M step. The estimation of the
parameter o; is much more uncertain than of y; in particular at small sample
sizes.
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2.2.6 Dolan’s matrix method

When the integral in the basic equation is approximated by a sum an obvious
idea is to solve the resulting system of n linear equations with respect to the
unknowns ¢(y;), setting n =m

>z —y)g(y) Ay = h(z), i=1,..,n. (2.49)

J=1

h(z;) is obtained from the observed sample of h(z).

This method is rather popular among astronomers due to its simplicity
and flexibility since we do not have any particular basis for assumptions
about the functions f, g, h. (For further details see Bok (1937)). There are,
however, serious problems in practical applications. Unless the sample size
is large, the solution of this system of linear equations often yields negative
g(y;)-s violating the g(y;) > 0 property of probability densities (cf. Trumpler
and Weaver 1953, p. 112-114).

The equations can be written in the more compact matrix form FG = H
where F, G, H are n xn, nx 1 and n X 1 matrices, respectively. The solution
is simply given by G = F~'H requiring the inversion of F. The large errors
occurring in the solution G can be understand if we recognized that appli-
cation of F on G means some kind of "smoothing”. The application of the
inverse transformation on H amplifies the stochastic fluctuations inherent in
obtaining H.

The solution of the system of linear equations requires the inversion of the
F matrix. Unfortunately, in a number of cases some of the eigenvalues of F
are small making the numerical inversion very unstable. To avoid the problem
of matrix inversion Dolan (1974) proposed the technique of apodisation (see
e.g., Lloyd, 1969). Apodisation constructs the G matrix from the observed
H using the known properties of the gaussian ”smoothing” function. A
discussion of the numerical accuracy of this procedure is given by Dolan
(1972). As shown by Lloyd, the matrix G has elements

1
95 =y = B{G My + ] = hy} (2.50)

where [ is the "apodisation length” and K is an ”instrument factor” whose
value depends on the shape of the smoothing function. For a gaussian func-
tion K = (2/m)(c/l)%. The apodisation length, I, should thus be chosen to
the nearest integer number to the dispersion o . The expression given above
strongly resembles that obtained in the first approximation of Eddington’s
solution.
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2.3 Concluding remarks

All the methods discussed in the present chapter represent different ap-
proaches to the same problem. As we mentioned in the introduction there
is a typical situation in statistical astronomy where the probability densities
of the distance-dependent measurable quantities, of its true physical coun-
terparts, and of some distance measures are connected by the convolution
equation.

To get the probability density function of the unobserved background
variables (e.g. the distance), however, is not a simple analytical procedure
of solving a Fredholm-type integral equation of the first kind. Namely, the
probability density function h(z) of the observed variable z is not given but
has to be estimated somehow from a sample obtained from the observations.

From the analytic properties of the Fredholm integral equations of the
first kind it follows that a small deviation from h(z) is amplified by the solu-
tion process in obtaining ¢g(y). This uncertainty is inherent in the equation
and can not be overcome by a suitable choice of procedure. In this view
the result of Haldsz (1984) is very significant, i.e. the improvement of the
statistical accuracy in getting h(z) by increase of the sample size n means an
improvement in g(y) proportional only to log(n).

Solution procedures may differ in some practical aspects: how they ap-
proximate the integral in the equation or the numerical derivatives of h(z)
(e.g. in the case of the Eddington or Malmquist methods). These practical
aspects could cause particular uncertainties not inherent in other procedures.

The approximation of the integral with a finite sum reduces the solution
to the problem of the estimation of unknown parameters behind an observed
sample. However, the parameters to be estimated are not in the true sense the
values of the unknown g(y) function but its integral over Ay. Consequently,
the accuracy of the estimated parameters follows the general /n rule of
parameter estimation, when n — +oc.

The EM algorithm and its particular case the Lucy algorithm have the
nice property of retaining g(y) > 0 for the probability density function of y.
Analytic solutions often suffer from violating this basic property, in particular
when the sample size is not large.

The computational efforts are very different among the procedures dis-
cussed in this chapter. Obviously, the first approximation of the Eddington
solution and the formula given by Dolan are the simplest also from that point
of view. The EM algorithm on the other hand requires much more comput-
ing time and memory, in particular when the sample size is large, but it has
the clear benefit of a sound theoretical basis in mathematical statistics.

This discussion does not attempt to give strict advice on performing so-
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lutions in particular cases. Our aim was rather to call attention to important
aspects when trying to find the solution. Our feeling is, however, that the
true essence of the problem is more stochastic than analytic and those pro-
cedures are superior which retain this basic characteristic.
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Chapter 3

Separation of Components

3.1 Separation of the Zodiacal and (alactic
Light

The TRAS space mission covered the whole sky in four (12, 25, 60, 100 um)
wavelengths. In particular, the 12 and 25 pm images were dominated by
the thermal emission of the Zodiacal Light (ZL) having a characteristic tem-
perature around 250 K. The contamination of the Galactic Dust thermic
radiation by the ZL is quite serious close to the Ecliptic. Assuming that
both radiation are coming from optically thin media the observed infrared
intensities are sums of those coming from these two components. We may
assume furthermore the distribution of the intensity of thermal radiation
on the sky coming from the Galactic component has some similarities when
observed at the given wavelengths and the same holds also for the ZL. Iden-
tifying the radiation coming from these two physically distinct components
with the hidden variables in Eq. (1.1) and the incoming intensity with the
observed ones the separation of the ZL. and the Galactic radiation can be
translated into the general framework of factor analysis.

In the case of the IRAS images the R correlation matrix has a size of 4 x4
by cross correlating the four (12, 25, 60 and 100 pum) images. We selected a
field of 15° x 15° (corresponding to 500 x 500 pixels) in the Perseus close to
the ecliptic and containing the California Nebula, IC 348 and the Pleiades.

Solving Eq. (1.2) in this case we got the results summarized in Tab. 3.1.
One can infer from this table that there are two large eigen values indicating
the presence of two important factors. The last two columns of the table
give the a;;, factor coefficients for Eq. (1.1). The first factor dominates the
radiation at 12 and 25 pum while the second one does it at 60 and 100 um.
Computing the factor values from the observed data (the measured 12, 25,

29
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Figure 3.1: Input IRAS (12, 25, 60, and 100um) images of the factor analysis
and the resulted two factor pictures. The coordinates are measured in pixels.
The objects are the California Nebula, IC 348 and the Pleiades, in descending
order. Note the strong trend in Fj representing the ZL while F; displays the
Galactic component (Baldzs & Téth , 1991).
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Table 3.1: Results of factor analysis. There are two large eigen values
indicating the presence of two important factors. The last two columns
of the table give the a;;, factor coefficients for Eq. (1.1). (Baldzs et al. , 1990)

eigen value cum. percent. | Variable 1. factor 2. factor
2.4818 62.0 Fiy 0.9637 0.2089
1.3910 96.8 Fys 0.9917 0.0458
0.1003 99.3 Fso 0.3625 0.9044
0.0268 100.0 Fipo 0.0409 0.9819

60 and 100 pm intensities) one gets the two images as shown in Fig. 3.1,
along with the originals (Baldzs & Té6th , 1991).

In order to define regions of similar physical properties we performed
cluster analysis in the {F}; F»} factor plane. These two factors define a two-
dimensional subspace in the four-dimensional color space. The 1-st factor
almost fully explains the 25 pm flux, which is heavily dominated by the
Zodiacal Light and therefore represents its influence in different colors. The
second factor, in contrast, describes the effect of the radiation coming from
the galactic dust which produces most of the 100 pm emission. Performing
cluster analysis altogether 10 regions were defined, however this figure was
arbitrary. The result is given in Fig. 3.2. The basic features of this plot are
the two 'fingers’ pointing upwards and nearly horizontally. These ’fingers’
may be identified with the Zodiacal Light (dominating F}) and the galactic
radiation (dominating F5).

The dust emission is basically thermal. We computed the total infrared
emission by adding the fluxes in the four bands:

F:F12+F25+F60+F100 (31)

Assuming a dust emission law in the form of B(T)/\* where B(T) is
the black body (BB) radiation at 7' temperature, A the wavelength and
a depend on the physical properties of the emitting dust, we put a = 1.
However, recent studies of the far infrared radiation of the ZL with the ISO
satellite indicate nearly BB radiation (Leinert et al. , 2002), i.e « = 0. The
specification of « influences the numerical results obtained, of course, but
our goal is only to demonstrate the link between the statistical procedure
and the physical quantities.

The F;/F ratios (i is 12, 25, 60 or 100) depend only on 7' if a region deter-
mined by one characteristic temperature. Supposing the validity of the dust
emission law given above we computed the loci of such regions in Fig. 3.2,
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Figure 3.2: Character plot of regions (clusters) of similar properties in the
{Fy; Fy} factor plane (left panel). The identical symbols mean physically
similar regions. The basic features of this plot are the two 'fingers’ pointing
upwards and nearly horizontally. These 'fingers’ may be identified with the
Zodiacal Light (dominating Factorl) and the galactic radiation (dominating
Factor2) (Balazs et al. , 1990). Distribution of duster members in the
{F25/F; F60/F} plane (right panel). The coding of dusters is the same
as in the left panel. The loci of dust low o = 1 radiations of different
temperatures are marked with crosses. The numbers in parentheses are the
respective temperatures. Note that the wedge-shaped distribution of symbols
representing real measurements points towards about 40 K and 200 K dust
temperatures (Baldzs et al. , 1990).

marked with crosses the sources of different temperatures in the line of sight.
As a consequence, the real points in Fig. 3.2 are not on the theoretically
computed line but deviate from it according to the relative intensity of su-
perimposed sources of different temperatures. One gets a wedge-shaped dis-
tribution of symbols representing real measurements pointing towards about
40 K and 200 K dust temperatures. This distribution can be obtained from
the superimposed ZL and Galactic sources with these characteristic temper-
atures.
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3.2 Sturucture and Dynamics of the Cepheus
Bubble

3.2.1 Basic characteristics

Analysing the TRAS 60um and 100pm maps of Cepheus, Kun, Balazs and
Té6th (1987, hereafter KBT) reported that the area | = 90° to 106°, b =
+3° to +10° is faint at far-infrared wavelengths, and is encircled by a ring-
shaped region of enhanced infrared emission, the ‘Cepheus Bubble’. They
compared the IRAS maps with Dubout-Crillon’s (1976) Ha photographs,
and demonstrated that the brightest parts of the infrared ring correspond to
the HII regions IC 1396, Sh2-129, Sh2-133, Sh2-134, and Sh2-140 as well as
to fainter or smaller HII regions not listed in Sharpless’ (1959) catalogue.
Since most of the listed bright HI1I regions were placed at about 900 pc from
the Sun in the literature, KBT accepted this value for the Cepheus Bubble
as well.

The infrared ring is probably related to the 6° loop structure discovered
at | = 103°, b = +4° by Brand and Zealey (1975) as semi-circular filamentary
dust lanes and faint emission nebulosity on the POSS prints. They associate
this structure with Cep OB2 by noting that to the west the dust seems to
interact with 1C1396, although in their Table 1 erroneously Cepheus OB1 is
given as related OB association. In the area encircled by the infrared ring a
deficiency in H I column density was observed by Simonson and van Someren
Greve (1976, hereafter SVSG) in the [—20, —6] kms~! radial velocity range.
The infrared ring coincides positionally with the OB association Cepheus
OB2, which consists of two subgroups: the older and more dispersed one,
Cep OB2a ( t > 8 x 10%rs, de Zeeuw and Brand (1985)) occupies the
interior of the ring, while the younger and smaller subgroup, Cep OB2b
(t = 4 x 10%yrs, SVSQG) is situated at the edge of the ring. Since the distance
of Cepheus OB2 is also about 900 pc, KBT proposed a physical link between
the association and the bubble. A similar link was assumed earlier by SVSG,
interpreting the low HI content in the region as a sign of the full ionization
of the interstellar gas by the Cep OB2 association.

KBT proposed that the Cepheus Bubble had been created by the strong
stellar wind/UV radiation and the subsequent supernova explosion of the
most massive star in the older subgroup Cep OB2a. The exploded star
was perhaps the former companion of the runaway star A\ Cep whose proper
motion points backwards approximately to the centre of the bubble. From
tracing back this motion, KBT estimated an age of 3 x 10%yrs for the bubble.
The proper motion measured by the Hipparcos satellite does not significantly
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change this age estimate. The formation of the younger subgroup, Cep OB2b
could have been triggered by stars of Cep OB2a via stellar wind and propa-
gating ionization fronts as proposed by KBT and Patel et al. (1995). This
trigger could also be responsible for the birth of OB stars and cold embedded
IRAS sources along the periphery of the Cepheus Bubble (KBT, Baldzs &
Kun, 1989).

De Zeeuw et al. (1999) determined the distances of nearby OB associ-
ations using proper motions and parallaxes measured by Hipparcos. Their
work on 49 members of Cep OB2 resulted in a distance of 559 + 30pc, signifi-
cantly lower than the 900pc assumed before. However, the recalibration of the
upper main sequence, suggested by Hipparcos, would also lessen the distance
of those objects along the periphery of the bubble (H ] regions and reflection
nebulae) which were used as distance indicators for the Cepheus Bubble by
KBT. Thus the arguments for the physical connection of the bubble with Cep
OB2 are probably not affected by the new distance values. Therefore further
investigations are needed before accepting the shorter Hipparcos scale.

A better understanding of the history of this Cepheus region requires
more detailed mapping of the interstellar matter (including better distance
estimates) as well as information on the large scale motions. Velocity in-
formation can also help to separate distinct interstellar features projected
on the IRAS images. Recently, Patel et al. (1998) conducted a CO (1 — 0)
spectral line survey in Cepheus and discussed the origin and evolution of
the Cepheus Bubble on the basis of the overall distribution of molecular gas.
They also performed an HI survey and concluded that the bulk of the inter-
stellar gas associated with the bubble is in atomic form. In this section we
investigate the large scale morphology and kinematics of the Cepheus Bubble
by a detailed analysis of the distribution of atomic hydrogen.

In the following we analyse HI 21 ¢m measurements taken from the
Leiden/Dwingeloo survey, in order to identify the atomic gas component
of the Cepheus Bubble. In addition to the more traditional methods, the
analysis of the HI maps is also performed by using multivariate statistical
methods. After connecting these new pieces of information into a coherent
picture, we speculate about the possible origin of the Cepheus Bubble.

3.2.2 Distribution of neutral Hydrogen

The HI data were taken from the Leiden/Dwingeloo H I survey (Hartmann &
Burton, 1997). The angular and velocity resolution of the spectra are 36’ and
1.03 kms™!, respectively, covering the velocity range [—450,+450] kms™!.
The observed positions are distributed on a regular grid with steps of 0.5°
both in [ and b. This grid provides a spatial resolution of up to 3 times
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higher than obtained by SVSG, although the Leiden/Dwingeloo sampling is
somewhat coarser than that of the HI data set of Patel et al. (1998).

HI distribution in the channel maps In the region [ = 95° to 110°,
b = 0° to +15° HI emission is dominated by a narrow galactic plane layer of
b < +6° at any radial velocity between —110 kms~—! and 20 kms~!. Although
H 1 emission is detectable over a large range in both b and Vg, at b > 46°
the most prominent emission features appear in two discrete velocity intervals
at [—155, —135] kms~! and [—45,+20] kms~!. The HI structure at Vigp ~
—145 kms~! belongs to the extended Outer Arm high velocity cloud (Wakker
and van Woerden, 1991), whose study is beyond the scope of this work.

We focus on the [—45, +20] kms~! velocity range, and search for hydrogen
structures possibly associated with the infrared ring found in the IRAS maps.
We display in Fig. 3.3 and 3.4 a series of HI maps by integrating the spectra
over 4 kms~! velocity intervals between —38 kms~! and +10kms~'. The
maps show that the bulk of HI emission arises from the [—14, +2] kms™!
velocity range. Since the infrared ring is expected to correlate with the
projection of the most prominent H/I features on the sky, we plotted in Fig.
3.5 the hydrogen emission integrated between —14kms~! and +2kms™*.
The figure shows a well-defined closed ring around the low emission region
[ =101° to I = 105°, b = +2° to b = +2°, a result also published by SVSG
and by Patel et al. (1998).

An inspection of the HI maps of Fig. 3.3, 3.4 reveals loop structures
in several velocity regimes. The most prominent ring structure, with sharp
inner edge in the direction of the Cepheus Bubble, appears in the Vj, =
[—14,—10] kms~! range. A similar ring-like pattern is clearly recognizable
at more negative velocities as well. Between —26 kms™! and —14 kms™1,
Fig. 3.3 shows a low emission area (‘hole’), bounded by stronger HI emis-
sion regions, and the whole structure extends over about parallel to the
galactic plane. Although the center of this higher negative velocity hole
(I ~ 103° b ~ +8°) is at slightly higher galactic latitude than that of the
ring in Fig. 3.5, the transition between these two loop structures is contin-
uous in the velocity space (Fig. 3.3, 3.4), providing a strong evidence for
their physical link. At even higher negative velocities (Visr =~ —26 kms™!)
the upper boundary of the hole is fragmented, and the loop structure is
no longer visible. The fragments are, however, still recognizable at more
negative velocities, roughly following the trend that fragments of higher neg-
ative radial velocities appear closer to the center of the former ring. At
Visr ~ —30kms~! even these fragments disappear. The interpretation of
these results in terms of an expanding shell is given in Sect. 3.2.3.
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Figure 3.3: HI 21 c¢m maps toward the Cepheus Bubble in the
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Figure 3.5: HI 21 cm intensity integrated between -14 and +2 kms~!. The
lowest contour is 300 Kkms~!, the contour interval is 100 Kkms~!. The
circle around the low emission region marks the approximate outer boundary
of the infrared ring.
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So far we identified the significant cloud complexes related to the Cepheus
Bubble by visual inspection of the HI maps. This method, however, is not
automatic, can be somewhat subjective, and works less efficiently in regions
where the resolution of the kinematic distances, resulting from the differential
rotation of the Galaxy, is poor (like in the Cepheus region which is close to the
[ = 90° tangent point). Visual inspection may also fail to identify structures
which extend over very large radial velocity ranges due to internal and/or
peculiar motions. In the next subsection we use a multivariate statistical
method for identifying the main structures in the data cube representing the
Cepheus Bubble, free from subjective bias.

Multivariate analysis of the HI channel maps The positional and
velocity data of the neutral hydrogen form a data cube {l,b,v}. We assume
that the HI emission is optically thin, and the observed channel maps are
weighted superpositions of & components which represent the main hydrogen
cloud complexes, i.e.:

k

where I;, a;; and F}; are the measured intensities in the channel maps, the
weighting coefficients, and the contributions of the components, respectively,
and n is the number of the channel maps. Normally, we may assume that
k < n. Description of the observed variables by linear combination of hidden
variables (factors) is a standard procedure of multivariate statistics.

We make the assumption that the correlation between the F; components
is negligible. This assertion enables us to apply the principal components
analysis (PCA) for finding the number of significant components (factors) and
their numerical values, using standard techniques implemented in statistical
software packages. The PCA represents the observed variables (T,Av values
in our case) as linear combinations of non-correlated background variables
(principal components). We note that although PCA is often used for finding
the factors, there are many other techniques for obtaining a factor model.
PCA and factor analysis represent two different procedures, strongly related
but not identical.

PCA obtains the factors by solving the eigenvalue equation of a matrix
built up from the correlations of the observed quantities. The components of
the obtained eigenvectors serve as coefficients of the factors (the significant
principal components in this technique) in the equation given above. The
eigenvalues A1, ...\, glve some hlnt for the importance’ of the corresponding

components. The \;/ Z and Z i/ Z ratios indicate what percentage of
=1 7=1 Jj=
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the variance of the observed variables can be explained by the ¢-th principal
component (explained percentage) and by the linear combination of the first ¢
principal components (cumulative percentage). For further details of this
technique see Murtagh and Heck (1987). PCA is a standard procedure of
many statistical software packages. Baldzs et al. (1990) used this technique
to separate the galactic background from the zodiacal light.

We analyzed a matrix built up from the mutual correlations between the
HI channel values. We used altogether 43 channels in the [-38,+6] kms™!
region, corresponding to a sampling frequency of about 1 kms~!. Table 3.2
shows the eigenvalues and the explained percentages of the principal compo-
nents, as well as their cumulative percentages. We found that the 6 major
principal components having eigenvalues larger than 1.0 can describe 95.4%
of the variance of the observed HI channel maps. We kept these principal
components for getting the factors describing the observed H I distribution.
The results demonstrate that the 43 channel maps can be represented by
only 6 maps created by the PCA, while the remaining 37 maps carry mainly
redundant information, and may be dropped from the further data analysis.
However, the PCA does not guarantee that a factor map contains only phys-
ically related objects: if two independent HI clouds appear exactly in the
same velocity range, they would be included in the same factor.

Table 3.2: Results of the factor analysis on the HI data of the Cepheus
Bubble. There are 6 eigenvalues > 1 reproducing 95.4 % of the total variance
of the data.

PC Eigenvalue. Pct. of Var. [%] Cum.Pct. [%)]
1 20.41 A7.5 45.5
2 7.80 18.3 65.8
3 5.87 13.7 79.5
4 3.41 7.9 87.4
5) 1.87 4.3 91.8
6 1.56 3.6 95.4
7 0.66 1.5 96.7
8 0.52 1.2 98.1
43 0.00 0.00 100.0

Fig. 3.6 presents maps of the 6 factor values, and Fig. 3.7 shows the
weighting coefficients for these 6 factors as a function of radial velocity.
Fig. 3.7 reveals that each factor has a well-defined radial velocity interval
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Figure 3.6: Maps of the factor values. The lowest contour is -1.2, the contour
interval is 0.4. The bubble itself is described predominantly by Factor 2.
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maps

where it is dominant and where the contributions of the others are almost
negligible.

In the following we compare the results of the PCA with those derived in
the previous subsection. The well defined loop structure in the velocity range
[—14,—10] kms~! (Fig. 3.4) can easily be identified with Factor 2, by both
their patterns and their velocity ranges. Factor 1, although dominated by a
very strong feature at b < +5° contains also the loop visible in the maps
of Fig. 3.3 between —26kms~! and —14kms—'. Fragments of this loop
towards the centre can be associated with Factor 3. On the more positive
velocity side, Factor 5 is dominated by a concentration towards the interior
of the ring, although at this velocity significant foreground contamination
due to local HI can be expected. Factor 4, which is important only at more
positive velocities, and the weak Factor 6 apparently do not carry substantial
information on the bubble.

We found that all prominent emission structures, recognized in the HI
maps of Fig. 3.3, 3.4, were identified by the PCA as well, and the results of
the multivariate analysis could be converted into useful physical information.
This approach offers an objective way to get an unbiased estimate of the
characteristic radial velocities of the most significant structures, which is not
given by the visual inspection. The method also shows how to reduce the
size of our data cube without losing too much information, and therefore it
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could be used for automatic analysis of larger data sets, too.

H1I distribution in the position-velocity space The existence of an
extended depression in the hydrogen emission at high negative velocities is
also evident from Fig. 3.8, a position-velocity diagram taken perpendicularly
to the galactic plane at [ = 102°. The figure shows a large hole between b = 3°
and 11°, Vogg = —37 and —4 kms~!, and suggests that most HI features in
this velocity range (including the fragments at Vigp < —26 kms~!) belong to
a large interstellar structure, forming a closed loop around the hole. Similar
cuts at [ = 100° and [ = 104° reveal similar structures but with a somewhat
smaller diameter, justifying our choice of [ = 102° as the main cross section
of the bubble.

We propose to interpret the observed spatial-velocity distribution as ra-
dial expansion of a 3-dimensional shell. According to this interpretation, the
regular ring patterns in the [—26, —6] kms™! velocity range (Fig. 3.3, 3.4)
correspond to different cross sections of the shell, while the blue-shifted frag-
ments at Vigr ~ —37 kms~! represent its approaching part. The shift of
the fragments toward the hole’s center at larger negative radial velocities is
consistent with the expansion model, which predicts that at blue-shifted ve-
locities an expanding shell appears in the form of concentric rings of apparent
radii decreasing with radial velocity. The receding wall of the expanding shell,
however, is not easy to identify. Fig. 3.8 suggests that the receding side is
seen at Vigp ~ —4 kms~1, but this emission could be seriously contaminated
by HI emission from the solar neighborhood expected at Vigp ~ 0kms™" .
The map of Factor 5 (Fig. 3.6), however, which contains emission having cen-
tral velocity of ~ —4 kms™!, reveals a mass concentration towards the interior
of the bubble instead of the picture of a homogeneous foreground emission.
This result may indicate that the shell is closed at Vigr ~ —4 kms~!.

The apparent center of the shell lies at Vigp ~ —20kms~! and b ~ +7°
(Fig. 3.8). This velocity is significantly more negative than the Vigr ~
—12kms~! derived in the previous subsection as the characteristic velocity
of the best defined cross section of the bubble. Fig. 3.8, however, shows that
the emission of the shell along the velocity axis is asymmetric, concentrating
towards more positive radial velocities (the measured brightness tempera-
tures are approximately 15 K and 60 K in the directions of the approaching
and receding sides of the shell, respectively). This asymmetric mass distri-
bution may indicate that the Bubble was formed at the near side of a large
cloud complex. Assuming optically thin emission, the 1:4 brightness temper-
ature ratio between the approaching and receding sides is transformed into
the same ratio for the corresponding column densities. In order to determine
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Figure 3.8: Position-velocity map taken perpendicularly to the galactic plane
at [ = 102°.
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the true central velocity of the expansion, we weighted the radial velocities
of the approaching (~ —37 kms~!) and receding (~ —4 kms~!)side with the
densities. The result is Vigr ~ —10kms~!, close to the Vi ~ —12kms~!
yielded by the PCA in the previous subsection, but in clear contradiction
with the value of —2kms™! given by Patel et al. (1998), who assumed that
the systemic radial velocity of the Bubble is identical to that of the ionized
gas of 1C'1396. This difference in the systemic velocities may explain also
the discrepancy between the kinetic energies obtained by them and those
calculated below. Following the same procedure, i.e. weighting the velocities
with the corresponding H I densities, we also calculated an ‘effective expan-
sion velocity’” of ~ 10.2 kms~!. These velocities will be used to model the
possible physical origin of the bubble.

3.2.3 Physical nature of the bubble

Possible scenarios for the origin and evolution of the Cepheus Bubble have
been proposed by KBT and Patel et al. (1998). In the following we discuss
how the 3-dimensional expanding HI shell, described in the present work,
fits into these scenarios.

Mass and energetics We determined the mass of the HI shell by sum-
ming up the column densities of the HI gas (Hartmann & Burton 1997) over
the apparent area of the shell. In order to separate the emission related to
the shell from foreground and background emissions we multiplied the mea-
sured T, Av channel values by the corresponding factor weighting coefficients
from factors 2, 3 and 5, obtained in Sect. 3.2.2. In this way we obtained
a mass of M ~ 2.7 x 10°M,, , including a factor of 1.4 to account for the
total mass to HI mass ratio (Brown et al. 1995). This value is close to the
value of 3 x 10°M,, obtained by Patel et al. (1998). Including the mass of
molecular gas (1 x 10° M, Patel et al. 1998) would not change significantly
the total mass.

From the estimated mass and observed size of the shell we obtain an
initial ambient density of n ~ 5.3c¢m™3 for the interstellar medium in this
region. The mass of the bubble, together with the effective expansion velocity
derived in Sect. 3.2.2, provides an estimate of the total kinetic energy of
Ejin ~ 2.7x10%%rg for the expanding shell. Following Weaver et al. (1977),
we assume that about 20% of the total energy deposited into the ISM is
converted into kinetic energy. With this assumption the total energy of the
bubble is Ej;, = 1.4 x 10°terg.

The derived total energy is close to the canonical value of a supernova
explosion of 10%'erg, thus such an event is a possible origin of the expansion.
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In order to check if other sources were also able to provide the required energy
of the expansion, we estimated the total contribution of stellar winds from
some 20 O-type and early B-type members of Cep OB2a. The stars selected
are located within a circle of 3° (the approximate angular diameter of the
internal cavity) around HD 207198, and we assume that all are members of
the association. The mechanical luminosity was calculated by estimating the
mass loss from the spectral type and the luminosity vs. mass loss relation of
Garmany et al. (1981) and from the analytical expression given by Kudritzki
(1998). This gives 3 x 10%ergs™! for the mechanical luminosity of the OB
stars. Assuming that this luminosity was constant during the lifetime of
Cep OB2a (=~ 8 x 10%yrs, Sect. 3.2.1), the total power exerted amounts to
7.5 x 10°%erg. This figure agrees within a factor of 2 with the total energy
required for the expansion of the bubble. Considering the uncertainties in our
computations, we conclude that the integrated stellar wind from the existing
early-type stars in the interior of the bubble during a period of ~ 8 x 10%yrs
could also power the observed expansion.

Kinematics and age Massive O-type stars affect their environments via
UV radiation, stellar wind, and supernova explosion. UV photons ionize the
interstellar gas and develop an HII region, as well as homogenize the sur-
rounding medium by photo-evaporating the nearby clouds and/or removing
them via the ‘rocket effect’” (McKee et al. 1984). This homogenization pro-
cess enables us to describe the temporal evolution of the expansion by the
analytical formulae of Weaver et al. (1977) and Chevalier (1974) (see also
Tenorio-Tagle and Bodenheimer (1988)). In both the stellar wind bubble
(SWB) and supernova remnant (SNR) scenarios the evolution of the size
is given by a power law of R(t) ~ t, where p = 0.31 in case of SNR in
post-Sedov phase and p = 0.6 in the case of SWB. The expansion velocity
of the radius of the ring pattern is given by the time derivative of R(t), i.e.
Veep ~ pt?~'. Division of R(t) by V..,(t) gives a simple equation for ob-
taining ¢, the age of the Bubble. We emphasize that none of the mechanical
luminosity of the stellar wind, the explosion energy of the SN or the den-
sity of the ambient interstellar matter enters into the final expression of t,
depending only on p, the observed size and expansion velocity of the shell.
The ages obtained from this simple formula give therefore facing values of
t = 1.7 x 10%rs (SNR) and ¢t = 3.1 x 10%rs (SWB) for the expansion age
of the Bubble.

The age derived for a SWB, however, is only 40% of the lifetime of Cep
OB2a, and during this period the energy injected into the ISM via stel-
lar wind is only 3 x 10%%rg. This energy is significantly lower than the
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E = 1.4 x 10’ erg required for the expansion of the bubble. It would also be
difficult to explain why the creation of the SWB does not coincide with the
birth of most of the early-type stars. From these arguments we think that
a supernova explosion occurring about t = 1.7%yrs ago is a more straight-
forward explanation for the origin of the expansion. The derived expansion
age of a SNR is also consistent with the kinematic age of the runaway star
ACep (2.8 4+ 1 x 10%yrs, Stone (1979)), which was proposed by KBT to be
the former companion of the exploded star.

Evolution of the Cepheus Bubble As was discussed in the previous
paragraph, the observed large scale expansion of the Cepheus Bubble is prob-
ably due to a relatively recent supernova explosion in the Cep OB2a asso-
ciation. The true age of the bubble, however, may be significantly larger,
because the strong stellar wind and UV radiation from the progenitor of the
supernova, along with other OB stars in Cep OB2a, is expected to create a
large cavity already long before the supernova event. Both KBT and Patel et
al. (1998) propose that the younger subgroup of the association Cep OB2b
has been triggered by the older subgroup Cep OB2a. Since the age of the
most massive star of the younger subgroup is about 4 x 105yrs (Patel et al.
1998), an extended cavity/shell structure of approximately the present size
was already present 4 x 10%yrs ago.

In this picture the supernova has exploded in an already existing low den-
sity cavity. It is likely that by the time of the supernova event the shell around
the cavity was already fragmented and its expansion practically stopped (Pa-
tel et al. 1998). The expanding shock front of the supernova, however, re-
vived the old shell by forcing its fragments into motion again. The shock front
also interacted with those regions which existed before the explosion, such
as IC 1396, and possibly Sh2-140, NGC 7129. This interaction can explain
the relatively sharp and well-defined inner edge of the Cepheus Bubble. The
supernova shock might have also influenced the structure of the star forming
regions all along the Cepheus Bubble and triggered the recent wave of star
formation indicated by the IRAS measurements (Baldzs & Kun , 1989; Patel
et al. , 1998).
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Chapter 4

Star count study of the
extinction

4.1 Extinction map of L1251

The Cepheus Flare is an extended complex of molecular clouds, where lu-
minous stars are clearly absent, and it harbors dark clouds forming low mass
stars (for the details see the comprehensive study of Kun (1998) on this
region). L1251 (oo = 22"36™1; 62000 = +75°16") is a dark cloud in this
region at a distance of 300 £ 50pc (Kun & Prusti , 1993) and apparently be-
longs to this complex. Already at the advent of molecular radio astronomical
studies in the late sixties the cloud was detected among the ten brightest OH
emission sources on the sky by Cudaback & Heiles (1969). The cloud was
also listed among sources of strong formaldehyde emission (Dieter , 1973;
Sume et al. , 1975).

After these early successes of molecular radio observations L1251 appar-
ently escaped the attention of radio observers. Although Kun (1982) dis-
covered a number of Ha emission stars associated with L1251, it appeared
again in molecular radio studies in the late eighties (Sato & Fukui , 1989;
Zhou et al. , 1989; Benson & Myers, 1989). Zhou et al. (1989) recognized an
ammonia core in the dense part of the cloud and comparing the large num-
ber of Ha objects associated with the cloud Sato & Fukui (1989) concluded
that the star formation efficiency is anomalously high in L1251. From all
of these facts it was obvious that the star formation processes in this region
needed further detailed investigations. This motivated Kun & Prusti (1993)
to study the properties and distribution of faint IRAS point sources along
with the Ha emission objects. Their study indicated that L1251 has been
forming low-mass stars with an efficiency higher than usually encountered in

49



20 CHAPTER 4. STAR COUNT STUDY OF THE EXTINCTION

dark clouds. The eastern, head region of the cloud has been found to contain
more evolved YSOs than the western (tail) side.

A census of dense cores carried out by Téth & Walmsley (1996) based on
the N Hj3 1.3 ¢m line using the 100 m dish at Effelsberg resulted in detection
of eight ammonia cores with typical size of FWHM = 2’ (0.2pc at 350pc
distance). Five of the cores were found to be gravitationally bound. L1251
was recently surveyed in several mm lines, the structure and kinematics of
the cores were studied e.g. by Caselli et al. (2002), Lee et al. (1999), Lee
et al. (2001) and Nikoli¢ et al. (2003). Both infall and outward motions
were detected in the gravitationally unstable cores.

Té6th et al.  (1995) tried to explain the shape of the cloud, as seen in
the C'O observations (Goodman et al. , 1993; Sato et al. , 1994), by hy-
drodynamical modelling assuming an encounter of a dense molecular cloud
with an external shock, probably originated from a nearby supernova explo-
sion. Reality of this assumption gets some support from the detection of a
soft X-ray excess region eastwards from the cloud by Grenier et al. (1989).
Further confirmation of an SN explosion comes from the space motion of the
runaway star HD203854 (Kun et al. , 2000).

Although the dense gas component of the cloud is well studied, much less
is known about the distribution and properties of interstellar dust in and
around L1251. Recently Kandori et al. (2003) studied the extinction of
the dust component using B, V, R, I star counts and found high Ry values
indicating grain growth in the head of the cloud.

In the present work we study the spatial distribution of dust, the mass,
and the basic physical properties in the cloud by means of optical extinction
maps in B, V, R, I colors. For obtaining direct information on the spatial
distribution of dusty material the study of star counts is still one of the most
reliable approach. The basic aim of the recent chapter is to carry out such
kind of analysis.

4.2 Input data

In order to study the surface distribution of the optical extinction we ob-
tained star counts in B, V, R, I colors based on photographic observations
with the 60/90/180 e¢m Schmidt telescope of Konkoly Observatory. The
plates were digitized with a pixel size of 20 um in a 1.5 x 1.5 degree field
around L1251 using the PDS microdensitometer of Vienna Observatory in
1991. We scanned 4, 3, 3, and 2 plates in B, V, Ry, I; color, respectively. The
scans were processed with the ROMAPHOT photometric programme inte-
grated into the MIDAS data analysis package. The plates were calibrated
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via CCD observations performed with the 1.23 m Ritchey-Chretien telescope
of the German-Spanish Observatory, Calar Alto (Baldzs et al., 1992). The
limiting magnitude of the photographic survey was 19.0, 18.5, 17.5, and 16.5
in B,V, R;, and I, respectively. Although these figures are less than could
be obtained from the Digitized Sky Survey maps (see e.g. the extinction
maps of Cambrésy (1999)), the well defined color system, the much better
photometric calibration and four colors, however, make a sense for using our
data. The estimated completeness of star counts was about 1.5 magnitude
above the detection limit of the plates. The final star count maps of the
region were obtained by counting the stars in each color on pixels of 6’ x 6
size and a 2’ mesh of the star count maps was selected in both directions.
(This resolution approximately corresponds to those of the 100 pm IRAS
maps). Kun (1982) and Kun & Prusti (1993) lists 12 Ha objects (candi-
date pre-main sequence stars) apparently associated with the cloud. Their
effect on the R and I star counts might have significance. Consequently, we
have omitted them from the further analysis.

4.3 Extinction maps from star counts

Several studies indicated empirically that the surface distribution of star
counts is an excellent tracer of optical extinction. (e.g. Dickman (1978);
Cernicharo et al. (1985)). This means that there is a simple linear relationship
between the logarithmic star counts and the a.; extinction of a dust cloud:

aqg = a x log(N(m)) + b(m) (4.1)

where N(m) is the cumulative star count up to a given m limiting magnitude,
the a constant and b(m) depend on the Galactic longitude and latitude;
—b/a = log(Ny(m)) measures the logarithmic star count in an extinction-
free region (Dickman , 1978).

In the following we calibrate this expression using a multivariate statis-
tical method, the k-means clustering, and a maximum likelihood procedure.
Based on this calibrated relationship we assign extinction values to each star
count pixel yielding an extinction map of the cloud. The procedure gives as
a byproduct the distance of L1251 which enables us to calculate the mass of
the cloud. Since we derive the extinction of the cloud in different colors we
also discuss the ratio of the selective to total extinction.
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4.3.1 Definition of areas of similar extinction

The B, V, R, I star count data on the pixels defined above represent a
distribution of points in a four dimensional B, V, R, I parameter space.
Following the relationships between star counts and extinction we assumed
that the regions of equal extinction have equal star counts on the maps. In
other words looking for areas of equal extinction means searching for points
of similar coordinates, i.e. lying close to each other in the four dimensional
parameter space, made up from the pixel values of the star count maps.

The linear relationship between the logarithmic star counts and interstel-
lar extinction predicts a one dimensional manifold in the four dimensional
parameter space, stretched by the extinction, and there is a Poisson noise
superimposed on it by the star counts. Therefore, to convert star counts into
optical extinction we had to divide the whole star count map into regions of
equal counts. According to Equation (4.1) the logarithms of the star counts
are scaling linearly with the extinction; therefore we used the logarithmic B,
V, R, I star counts in this procedure.

In order to divide the points into groups of similar extinction in the
parameter space we invoked the technique of k-means clustering (see e.g.
Murtagh & Heck (1987)). K-means clustering orders the points in the pa-
rameter space into k£ groups. The k& number of the groups should be specified
before running the clustering procedure. Assigning the points to any of the
groups proceeds on the basis of some distance measure between the points.
We used squared Euclidean distance.

There are no definite criteria for fixing the value of k. By trial we selected

= 5 enabling clear separation of the high extinction regions from those of
low extinction and ensuring enough stars in each cluster for reliable analysis.
Figure 4.1 shows the result of the clustering, reprojected onto the celestial
sphere. Areas of same grey level in the map represent pixels belonging to
the same cluster and consequently, having similar extinction. Table 4.1
summarizes the number of stars in each subregion (cluster) in each color.
One can infer from the data of this table that the 5th cluster is scarcely
populated, therefore we excluded it from the further analysis.

The central, densest part of L1251 is clearly separated from the surround-
ing lower extinction region. Already at the first glance of this figure one gets
the impression of a flying bullet of supersonic speed in respect to an ambient
medium. The less dense area surrounding the bullet-like main body of the
cloud has a form of a bow shock. Accepting this view one can estimate the
relative speed of the cloud to the ambient medium. The interaction of the
cloud with its surroundings is probably the key issue in understanding the
history of star formation. We will return to this problem later on in Sect. 4.4.
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Figure 4.1: Result of the clustering, reprojected onto the celestial sphere.
The areas of same grey level represent pixels in the map belonging to the
same cluster and having similar extinction. We displayed the cloud in rect-
angular coordinates in a plane tangential to the celestial sphere. North
is at the top and East is to the left. The (0,0) position corresponds to
Qo000 = 22"36™1; o000 = +75°16'.
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Table 4.1: Summary of the star count analysis of L1251, number of stars in
each cluster and in each color

Field Area(SqD) N Ny Ng N;
1. 0.9880 3982 3929 3939 2723

2. 0.8770 1883 2045 2186 1530
3. 0.1515 101 143 146 138
4. 0.0605 7 13 14 15
D. 0.0090 1 2 4 4

4.3.2 Modelling the effect of extinction on the star
counts

Modelling differential star counts

For calibrating star counts in terms of optical extinction we attempted to
model the observed apparent magnitude distribution of the stars. The start-
ing point of our approach was the Galactic model of Wainscoat et al. (1992).
Following the basic ideas of this model we assumed that the spatial distribu-
tion of the stars in the region investigated can be satisfactorily described by
superposition of exponential disks, corresponding to different types of stars,
and a spheroidal component. The exponential disks were defined by their
scale heights and local stellar densities near the Sun. We used the data of
Wainscoat et al. (1992) for the characteristic values of the exponential disks
in the model.

In order to model the effect of the absorbing cloud on the star counts
we assumed that besides the obscuring matter associated with L1251 there
is no other significant dust cloud in the line of sight. This assumption is
quite reasonable due to the high (4+15°) galactic latitude of L1251. As in the
Wainscoat et al. (1992) model we assumed that the diffuse component of
interstellar extinction has a form of

agiff(r) = agsec(b)(1 — exp(—rsin(b)/h)) (4.2)

where ag is a constant depending on the color selected, b is the Galactic
latitude of the cloud and h is the scale height of the obscuring material. We
added to the extinction described above a further component in the form of
a step function.

0, if r <ry

ag, ifr>ry (4.3)

a(r) = gy () + au(r)s aa(r) = {
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Table 4.2: Summary of the star count analysis of L1251, extinction

Field Area(SqD) ap 04, ay 04 agR Oup Q1 Og
1. 0.9980 045 0.05 0.30 0.05 0.12 0.05 0.10 0.03
2 0.8770 1.55 0.10 1.25 0.07 0.85 0.07 0.63 0.07
3. 0.1515 3.30 0.15 2.65 0.15 220 0.15 1.75 0.2
4 0.0605 6.5 080 5.2 080 >5.3 - 45 04

The distance of the cloud, r., and the cloud extinction, a., are constants to
be estimated within a cluster obtained by the k-means clustering in the star
count parameter space.

Maximum likelihood estimation of the distance and extinction

The model described in the previous section allows us to get the distance
and extinction of the cloud using the maximum likelihood (ML) estimation.
According to our model assumption the probability density of the apparent
magnitude of stars in our observed sample is given by

Almlag,ra) =w /OOO D, (r)®(m — 5log(r) — 5 — a(r|ac,rq))r*dr (4.4)

In the above formula w is a suitably chosen normalizing constant, Dg,(r)
means the spatial density, ® is the luminosity function assumed to have a
Gaussian form and sp runs over the spectral types represented in the Wain-
scoat et al. (1992) model. We used Monte Carlo simulation in order to get a
distribution of apparent magnitudes corresponding to the probability density
of A(m|au,rq). We used the MC simulated data to calculate the numerical
values of A for the ML procedure.
The likelihood function in our case can be written as

L(aa,ra) = ilog<14(mi’acl; Ter)) (4.5)

where m;-s are the observed apparent magnitudes in one of the colors in our
sample. Maximization of L(ay,7y) in respect to ay and ry yields the ML
estimation of the extinction and the distance of the cloud.

Performing the ML estimation within all groups given by the k-means
clustering and in all colors, separately, we obtained the results summarized
in Tables 4.2 and 4.3. The results summarized in Table 4.2 enable us to



26 CHAPTER 4. STAR COUNT STUDY OF THE EXTINCTION

Table 4.3: Summary of the star count analysis of L1251, distance moduli;
the weighted mean of the data gives 7.58 0.2

Field Area(SqD) rp 0.4 ry Ory TR Org e Oy,
1. 0.9880 7.45 0.60 >8.50 - - - - -
2 0.8770 750 035 7.75 0.55 <76 - <74 -
3. 0.1515 775 030 T7.65 045 7T.65 045 <74 -
4 0.0605 7.05 0.7 <74 - <74 - <73 -

convert the star counts in different colors into extinction. We return to this
calibration in the following subsection.

One may use the calculated distance moduli in Table 4.3 to get an esti-
mate for the distance of L1251. We computed a weighted mean of the data
in the table using weights inversely proportional with o. It resulted in a
distance modulus of 7.58 4+ 0.2 corresponding to 330 4 30 pc.

Confidence interval for the parameters estimated

The ML estimation allows a straightforward way to obtain the confidence
interval for the estimated parameters, the extinction and distance. Denoting
the value of the parameters maximizing the likelihood function with a}**,
rmeT and with af“e | ri7e their true values we have asymptotically if the
sample size goes to infinity

2[L<ama:r T,mam) o L(atrue T,true)} — ij k=29 (46)

c 'c cd 'el

In general, k equals the number of parameters estimated and Y7 is a
x-square variable with k degrees of freedom (for the proof of this theorem
see Kendall & Stuart (1973)). The probability that the true values of the
parameters are within a certain region in the &£ dimensional parameter space
is given by

Pxi<xg)=1-90 (4.7)

The projection of this k dimensional domain which is given by the x7 <
X3, inequality yields the confidence interval of the individual parameter val-
ues estimated by the ML procedure. The x3,,d pairs are tabulated and one
may find them in the text books (see e.g Kendall & Stuart (1973)). The con-
fidence intervals corresponding to the 1o levels are given in the o columns of
the tables. In the case of Field 4 due to the small numbers of stars the con-
fidence interval is not closed towards higher extinctions and lower distances.
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Table 4.4: Linear least squares fitting of the ay = a X log(N(m)) + b(m)
extinction - star count relation

color a g, bm) oy
B —4.08 0.23 5.78 0.21
V. —408 0.16 5.67 0.15
R —439 030 586 0.28
I —4.52 0.18 5.31 0.16

4.3.3 Star count - extinction conversion
Verifying the linear log N(m) - extinction relationship

The results yielded by the ML analysis enabled us to verify the star count -
extinction relationship in each color in our study. Assuming the functional
form of the formula given by Eq. (4.1) one can get its constants by a linear
least squares fitting of the star counts versus extinction given in Table 4.2.
We summarized the results of the least squares fitting in Table 4.4.

Table 4.4 clearly demonstrates that the linear relationship fits nicely to
the data obtained from the ML analysis. It means that the postulated lin-
earity was convincingly recovered from the ML analysis performed.

In the B and V colors the slope of the relationship is the same while in
R and in I, in particular, significantly differ. In the literature the inverse
value of a is usually given. Using the value of a obtained for B would give
a bias of about 0.44 log[Ny(m)/N(m)] mag in the estimation of the optical
extinction, in the I color.

4.3.4 Surface distribution of the obscuring material

Based on the calibration procedure one may assign extinction to each pixel
in the star count maps, in all of the four colors studied. Fig. 4.2 shows the
contour maps of the extinction obtained in this way. The main body of the
cloud jumps out with a contrast of several magnitudes from the less obscured
region behind the bow shock.

The overall distribution of the obscuring material, obtained from our
study and that of Kandori et al. (2003), has a reasonable good correlation.
There are, however, remarkable differences between them, in particular in
the densest part of the cloud. The probable reason for these discrepancies
lies in the different ways used in obtaining extinction maps from the surface
distribution of the stars in the region of L1251. Both studies had a mesh of 2’
resolution but applied different kind of smoothing. We used a boxcar of 6'x 6’
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L1251: surface distribution of B extinction mag. L1251: surface distribution of V extinction mag.
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Figure 4.2: Contour maps of the extinction in the B, V| R and [ color. The
‘flying bullet’ form of the main body and the bow shock displayed in Fig. 4.1
is clearly visible. The coordinates of the (0,0) position are same as in Fig.
4.1
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size while the other study a Gaussian filtering of 6’ resolution. It is probably
important to note that the tails of the Gaussian filter give contributions from
much wider areas, in particular in the densest part where the star counts have
low values.

A further reason for the discrepancy might originate from the method of
converting the star count maps into extinction. Our method accounts for
the foreground stars whose contribution increases the counts and decreases
correspondingly the estimated extinction values. We made simulations of the
Wainscoat et al. (1992) model assuming a limiting magnitude of about 19
mag and 6 mag of extinction at the distance of L1251. The conventional way
of the star count extinction conversion resulted only in a 5 mag. value, i.e.
one magnitude less than the true (6 mag.) extinction.

4.4 Discussion

4.4.1 Shape of the cloud

We have already indicated above that the extinction map derived from the
star counts makes the impression of a body flying with a hypersonic speed
across an ambient medium.

The shape of 1.1251 was accounted by Té6th et al. (1995) for a shock wave
passing the cloud and produced by a nearby supernova. They showed that
the cooling by the H, molecules plays an important role in the formation of
the observable shape of the cloud.

The presence of a bow shock as indicated by the inspection of the extinc-
tion maps suggests another type of the cloud-environment interactions. The
observed form of the bow shock in our case bears a remarkable resemblance to
that of a blunt body flying with hypersonic speed. The blunt body solutions
of the hypersonic flows are standard topics of the textbooks (see e.g. Hayes
& Probstein (1959). For the astrophysical context of the problem see the
works of Rézyczka & Tenorio-Tagle (1985) and Canto & Raga (1998)). One
can identify the tail of L1251 with a wake of the head of the cloud, typical
of the blunt body hypersonic streaming patterns.

In the following we do not try to fit the form of the bow shock using
some solution of the blunt-body problem. This solution would make a better
understanding of the role of different significant physical parameters defining
a particular fit, however this is beyond the scope of the present work. An
obvious significant parameter would be the Mach number of the flow which is

easy to calculate from the angle between the two asymptotes of the bow shock
(Hayes & Probstein , 1959). The Mach number is given by M = sin(a/2)™!
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where « is the angle between the asymptotes. It yielded M = 2 in our case.

It is clear already at the first glance that the bow shock is not symmetric
to the main axis of the cloud. The symmetry axis of the bow shock has a tilt of
about 10 deg to the main axis of LL1251. Probably it is conclusive to note that
the symmetry axis of the bow shock points toward the center of the bubble
discovered by Grenier et al. (1989). Kun et al. (2000) found a runaway
star which also might have been from the SN explosion probably responsible
for the bubble and derived an age of 10° yrs in this way. According to this
picture the bow shock resulted from an encounter of the cloud with the wind
coming from the interior of the bubble.

4.4.2 Properties of the obscuring material

The estimation of the total extinction in different colors makes it possible
to get the value of the total to selective extinction Ry = ay/Ep_y . The
scatterplot between ay and ap is displayed in Fig. 4.3. The relationship
between ay and ap can be written in the form of ag = (1 4+ 1/Ry) X ay.
We marked with lines (labelled with the corresponding Ry values) in Fig.
4.3 the relationships between ay and ap assuming that Ry = 3 (close to the
canonical value for the general interstellar matter) and Ry = 6. The line
assuming that the interstellar absorption does not depend on the color (grey
approximation) is also marked with Ry = inf.

Figure 4.3 clearly demonstrates that above ay = 3 (i.e. within the main
central body of L1251) the points depart from the Ry = 3 line and approach
the lines of higher Ry as one moves to higher extinction. Departure from
the canonical Ry = 3.1 towards higher values is a common behavior of dense
clouds (see the review paper of Mathis (1990)).

Postulating a relationship in the form of ap = a x ay, where a = (1 +
1/Ry), and substituting Ry values between 3-6, we can infer that o depends
only weakly on ay and may have approximately a form of a(ay) = ag+ aq X
ay. Assuming that Ry = 1+ 1/ap = 3.1 we made a least squares fitting
to get ay. In this way we obtained Ry (ay) = 1/(0.32 — 0.019 X ay) and
ap = aay) X ay gave a reasonable good fit to the points in Fig. 4.3.

Based on this result we may assign a value of Ry to every pixel in the ay
extinction map of L1251. By assigning Ry to every pixel we obtained a map
of the total to selective extinction as given in Fig. 4.3. One may infer from
this map that the high values of Ry are concentrated only in the densest
parts of L1251.

The canonical dependence of the interstellar extinction on the wavelength
is realized by the standard relation of Savage & Mathis (1979) which can be
well represented by a linear function of the extinction on 1/A in the range of
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Figure 4.3: Scatterplot between ay and ap (left panel). The relationship
between ay and ap can be written in the form of ag = (1 +1/R) X ay. We
marked with lines (labelled with the corresponding R values) the relation-
ships between ay and ap assuming that R = 3 (close to the canonical value
for the general interstellar matter) and R = 6. The line assuming that the
interstellar extinction does not depend on the color (grey approximation) is
also marked with R = inf. Assigning Ry to every pixel we obtained a map
of the total to selective extinction (right panel). One may infer from this
map that the high values of Ry are concentrated only in the densest parts
of L1251. The coordinates of the (0,0) position are same as in Fig. 4.1
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the B, V, R, I colors used in our study.

Departure from the standard Ry = 3.1 value above a;, = 3 in dense
interstellar clouds, as we found in the case of L1251, was also obtained by
Whittet et al. (2001) in the Taurus region. They claimed that for extinctions
ay > 3 real changes in grain properties may occur, characterized by observed
Ry values in the range of 3.5-4.0. A simple model for the development of Ry
with ay suggested that Ry may approach values of 4.5 or more in the densest
regions of the cloud. According to Whittet et al.  (2001) the transition
between “normal” and “dense cloud” extinction occurs at ay ~ 3.2, a value
coincident with the threshold extinction above which H,O-ice is detected on
grains within the cloud.

The Ry values derived in our analysis correspond to those obtained by
Kandori et al.  (2003) within the limits of the statistical errors. There
are differences, however, in the surface maps between the two studies. For
obtaining Ry values we used the relationship between the ap and ay values
so our surface map reflects basically that of the extinction in the V' color. In
the contrary, Kandori et al. (2003) applied an adaptive averaging of B — V/
and V — I color indices by varying the size of the smoothing window, keeping
constant the number of stars in it but on the cost of the spatial resolution,
in particular in the densest part of the cloud.

4.4.3 Mass of the cloud

Knowing the distance of L1251 we converted the ay extinction values into
the mass using the empirical formula given by Dickman (1978). According
to this formula

M = <ad>2ufj S av(i) (48)

where M, «, d, 1, ay (i) are, the mass of the cloud, the angular size of a pixel,
the distance, the mean molecular mass and the extinction of a pixel, respec-
tively; Ny /ay = 1.87 x 102*em™?mag~' and Ny = Ngy; + 2Ny,. Based on
the Dickman’s formula we computed the mass of the different subregions of
the cloud as given in Table 4.5.

Fields 3, 4 and 5 represent the main body of LL1251. Based on Table 4.5
the total mass of this part of the cloud amounts to 371 M. This value can
be compared with the figure obtained by Sato et al. (1994) based on C**O
measurements, taking into account that the field occupied by our main body
lies completely inside the region covered by the C**O study and contains only
85 % of the mass calculated from it. Re-scaling this fraction of mass onto
the distance we obtained in this work one gets 422M,, surprisingly close to
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Table 4.5: Mass of the cloud (using the formula of Dickman (1978))

Field Area(SqD) Mass(Mz) No.of pix.

1. 0.9880 153.34 887
2. 0.8770 490.48 784
3. 0.1515 212.60 136
4. 0.0601 132.05 54
d. 0.0089 26.07 8
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Figure 4.4: Fitting the radial distribution of the surface mass density by a
Schuster sphere. Up to 2.5 pc distance from the center the fit is very good.
Beyond this distance, however, there is an excess of the observed mass density
due to the tail of the cloud.

our estimated value. Studying a somewhat larger area than ours Lee (1994)
obtained 610 M, from his *2CO and *CO measurements.

4.4.4 Mass model of the head of L1251

We mentioned already in Sect. 4.4.1 that the shape of the cloud can be
represented as a hypersonic flow around a blunt body (the head of the cloud)
with a wake forming the tail. In the following we try to model the head
assuming spherical symmetry.

Recently, using the data obtained with VLT of the ESO Alves et al.
(2001) modelled the spatial structure of the Bok globule Barnard 68. They
supposed the globule to be an isothermal Bonnor-Ebert sphere (Bonnor |,
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1956; Ebert , 1955) in pressure equilibrium with the external much hotter
and less dense interstellar medium.

We have not required isothermality in our analysis. The isothermal so-
lution is a specific case of the class of polytropic spheres studied extensively
by Emden (1907). The isothermal solution represents the case when the
polytropic index n = oco. Actually, the mass of an isothermal sphere is in-
finite and the limit between the finite and infinite mass solutions is n = 5.
Although the mass is finite in this case the size of the sphere is infinite. One
obtains finite size solutions only in the n < 5 case. Recently, Medvedev &
Rybicki (2001) studied the properties of polytropic spheres near n = 5 and
found them very suitable to characterize the structure of molecular cloud
cores.

We fixed the mass center of the sphere at the maximum value of ay,. This
choice is quite reasonable in view of Equation (4.8). After fixing the center of
the sphere we averaged the ay values on concentric annuli. This procedure
gave a radial profile of the extinction of the head of L1251. This profile can
be converted into the surface mass density by Equation (4.8).

Evaluating the radial profile obtained from the observed data we projected
the n = 5 polytropic sphere (Schuster, 1883) for getting its surface mass
density distribution. The Schuster sphere has two free parameters to be
adjusted: the central mass density and a scale parameter. After adjusting
these parameters we get the fit displayed in Fig. 4.4. Up to 2.5pc distance
from the center the fit is very good. Beyond this distance, however, there
is an excess of the observed mass density due to the tail of the cloud which
significantly distorts the spherical symmetry of the head.

The density parameter of the fitted Schuster sphere, amounting 45Mgpc—3
(3.06 x 1072 gem™3), gives an estimate for the central mass density of the
head of L1251. Comparing the finite size polytropic solutions of n < 5 with
those of the Schuster sphere (i.e. m = 5) one can infer that they concentrate
more mass at finite distances and give a much worse fit to the points observed.

Assuming a polytropic gas sphere one can compute the radial velocity
dispersion profile from the fitted density profile, based on the polytropic
equation of state. The p/p ratio of the pressure and mass density gives the T
temperature, i.e. the velocity dispersion. The velocity dispersion projected
onto the celestial sphere can be directly compared with that observed. The
projected FFW HM of the V-profile of a Schuster sphere is displayed in Fig.
4.5, along with those of the N Hj3 molecule measured by Téth & Walmsley
(1996).

There is a considerable scatter of the measured line widths in the head of
the cloud around the mean which is well matched by the Schuster solution.
The Schuster curve, however gives an unexpectedly good fit in the tail region.
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Figure 4.5: FW HM of the projected velocity profile of a Schuster sphere
(dashed line) and the N H3 molecule measured by Téth & Walmsley (1996).
There is a considerable scatter of the line widths in the head of the cloud
around the mean which is well matched by the Schuster solution. The Schus-
ter curve gives an unexpectedly good fit in the tail region.

This good fit is not expected far from the head since due to the tail the mass
distribution drastically differs from the spherical symmetry. However, we
may assume that our predicted F'W H Ms of the N Hj line refers to the initial
and those measured by Téth & Walmsley (1996) to the final stage of the
formation of density enhancements in the tail region. We conclude therefore
that the formation of structures in the tail left the linewidth practically
unchanged. This indicates an isothermal contraction. However, the question
remains open: what kind of instability played a significant role in forming
the density enhancements in the tail. We note that according to Téth &
Walmsley (1996) the thermal energy is dominating over the turbulent energy
in the N H3 cores of the tail region and thus we can not exclude the scenario
that thermal instability played a significant role in the cloud fragmentation.
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Chapter 5

Classification of stellar spectra

5.1 Formulation of the problem

5.1.1 The quantitative measure of similarity

In order to make some quantitative comparison one has to introduce some
measure of similarity between the different spectra. This quantitative value
is the greatest (usually taken as unity) when comparing the spectra with
themselves and it is less otherwise. In the case of two spectra S, Sy the
quantitative measure of similarity ¢ fulfil the following inequalities:

(5(51,52) S 5(51,81) - 6(52,52) - 1 . (51)

It is easy to make a transformation mapping the similarity into the p
distance:

p=06(51,51) —20(S1, S2) + 6(S2, S2) (5.2)

If we have three spectra Si,.5; and S5 then the p distance should fulfil
the usual triangle criteria:

p(S1,52) = p(S2, S1)
p(Sb Sl) =0
p(S1,83) < p(S1,52) + p(S2, S3) (5.3)

An obvious definition for p is the quadratic Euclidean distance, i.e.
p(Sl, SQ) = /(Sl - 52)2d)\ (54)

69
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This distance definition requires identical spectra for p = 0. For the
purpose of classification, however, one should consider two spectra identi-
cal if they differ only in a multiplicative and/or an additive constant. For
quantitative classification, therefore the spectra have to be normalized:

go__5° f (5.5)
(S — 85)2dA

Where S = [ Sd\. (This normalization differs from those normally used
in spectroscopy where the intensity at a certain wavelength, e.g. at 5550 A,
is taken equal with unity). With this normalization

7 = /Zd)\ —0 and /ZQd/\ — 1. (5.6)

Let us suppose that we have two spectra S;(A) and Sp(\) then after
normalization

o(Z1, Z) = /(Z1 ~ Zo)2d\ = 2(1 — Ry). (5.7)

Where Ry = [ Z1Z5d\ is called the correlation coefficient between Z;
and Z,. The correlation coefficient varies between 1 and —1. It reaches 1
when 7y = Z5 and —1 when 2, = —Z,.

If we have a set of spectra Sy, .....,.5, the pair-wise correlations between
the elements of the set define a matrix R;; and correspondingly a matrix
of distances. Analyzing the structure of the distance matrix, i.e. looking
for possible groupings according to the distances, is the task of different
clustering algorithms. The algorithm results in the characteristic spectra
within the groups and can be used as templates for further classification.
One can find more details on this topic in textbooks dealing with different
clustering algorithms (see e.g. Murtagh and Heck, 1987).

5.1.2 Factorization of the spectra, number of signifi-
cant physical quantities

The Euclidean distance we introduced gives equal weights for all wavelengths
involved, regardless of the role the different physical quantities play in the
actual form of the spectra to be classified. (Nevertheless, In practical cases
the spectral features attributed to certain physical quantities are restricted
to particular wavelengths and their influence might be hidden in the noise
when computing pure Euclidean distances. In these cases one have to use
weighting functions in order to enhance the effect of the important quantities
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on the distances. If one does not have apriori knowledge on the spectra the
use of weighting functions could be the second approach after using pure
Euclidean distances.)

Normally, the output of the recent spectrographs is an array of intensities
where the number of elements of the array is much higher than the number
of significant physical quantities behind the observed shape of the spectra.
We may represent each spectrum by a point in a multidimensional param-
eter space where the dimension of the space equals to the number of the
elements of the observed array and, correspondingly, the intensities give the
coordinates of the point. The points representing the spectra will populate a
subspace of a dimension corresponding to the number of physical quantities
having influence on the shape of the spectrum.

If we have a set of arrays representing the observed spectra {Sq,...,S,}
they always can be expressed as a linear combination of orthogonal and
normalized arrays.

In order to study the number and nature of these significant physical
quantities (i.e. effective temperature, chem. abundances) we develop each
array, representing the spectra, into an ortogonal series; i.e. we assume that

0, if k#£I,

1, if k=1. (58)

S; =ajjer + ...+ anje, ; (ep, €)= {

Where ey, ..., e, are orthogonal normalized arrays. Any of the n arrays can
always be represented by means of the linear combination of n orthogonal
arrays but in the case of a small number of significant physical quantities
behind the spectra we may suppose that the number of orthogonal arrays k,
necessary to reproduce the basic properties of the observed ones, is smaller
than n. Namely, as we mentioned, due to the physical quantities playing
a significant role in the shape of the spectra the points representing each
spectrum in the parameter space populate a subspace of lower dimension than
the original parameter space representing the observed arrays. This subspace,
consequently, is stretched by smaller number of linearly independent arrays
than the whole parameter space.

It can be shown that the distance p(S;, ng)) between the ¢ — th member
of the observed n arrays, S;, and a linear combination of a set of normalized
orthogonal arrays {e;, j=1,...m <n}, ng) = a;e1+ ... + a;ne,, reaches
a minimum at a fixed m < n, with a suitably selected set of the vectors {e;},
if the a;1, ...., a;, coefficients are given by the elements of the first m < n
eigenvectors in the solution of the

Roy, = \or (5.9)
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eigenvalue equation. R is an n X n matrix consisting of the pair-wise
correlations between the arrays representing the n observed spectra; ¢ means
the k — th eigenvector and ) is the corresponding eigenvalue.

If m = n than S; = S"™ and the series S™ is called the principal
component representation of S;. The procedure attempting to reproduce the
basic properties of S; by m < n components is called factor analysis (Sec.
1.1.1). The factor analysis based on principal components is the default of
many statistical software packages (e.g. SPSS). One can find further details
on factor analysis in the textbooks (see e.g. Murtagh and Heck, 1987).

Performing factor analysis we succeeded in representing the original n ob-
served arrays by the linear combination of arrays of a less number. The a;;
coefficients depend on the physical quantities (e.g. effective temperature, lu-
minosity, chemical abundance) responsible for the basic characteristics of the
observed spectra. If the physical quantities have only a small change across
the given set of observed spectra one may assume that their relation to the
a;; coefficients is linear and the number of significant principal components,
the factors, is the same as those of the physical quantities. In that way,
therefore, factor analysis helps to derive the number of significant physical
quantities in the observed spectra.

5.2 Classification of Ha objects in 1C1396

Ha emission objects are important optical tracers of places of active star
formation. As observations testify they are usually overabundant in regions
(molecular clouds, stellar associations), known as sites of significant star for-
mation activity. This relationship is well established by many surveys on
wide field telescopes equipped with objective prisms of low spectral resolu-
tion. In a number of cases, however, due to the low spectral resolution, this
technique yields only objects with some suspect of Ha emission and useful
for further follow up investigations.

IC1396 is an extended HII region hosting the younger part of the Cepheus
OB2 association and the open cluster Tr 37. The HII region is excited by
the luminous OB stars of the association and in particular by HD 206267,
an O6Vf type star in a Trapezium-like system. The spectroscopic study of
luminous stars (Simonson, 1968) indicated that this younger part of Cepheus
OB2 has an age of about 3 million years. There are some evidence that the
interstellar matter of IC1396 was processed by a nearby supernova explosion
(Clayton and Fitzpatrick, 1987). The supernova might have been a member
of the older subgroup of Cep OB2 which is surrounded by a giant infrared
ring (Kun et al., 1987) connecting several well known star forming regions



5.3. OBSERVATIONAL DATA 73

(Sh2-140, NGC 7129), among them 1C1396 as well (see also Sect. 3.2). The
supernova explosion could have a significant influence on the star forming ac-
tivity in all of these areas. A detailed study of the IRAS point sources along
the giant ring (Baldzs and Kun, 1989) revealed that the brightest sources are
located at IC1396. There are several other indications that the formation of
massive stars is still going on in this region (Baars and Wendker, 1976; Sug-
itani et al., 1990). All of these facts make IC1396 an important laboratory
of the different physical phenomena playing significant role in the formation
of high mass stars.

The lower mass stellar population in 1C1396 is not so well studied as in
other sites of massive star formation like NGC2244, NGC2264, or NGC6530.
Marschall and van Altena (1987) estimated kinematic membership for Tr37
and Marschall et al. (1990) measured photoelectric UBV colors for 120 prob-
able members. They concluded that Tr37 contains several pre-main sequence
stars. Dolidze and Vyazovov (1959) published 125 H« emission stars in the
field of IC1396. Wackerling (1970) and Dolidze (1975) listed 45 objects while
Kun (1986) and Kun and Pésztor (1990) did so far the most comprehensive
study in this field identifying 220 H o emission stars. There are only two spec-
troscopically identified pre-main sequence objects, LkHa349 and LkHa349/c¢
in the Herbig- Bell Catalogue (1988).

Although the distribution of the interstellar matter is very inhomogeneous
the average foreground absorption is about 1.5 mag in the direction of IC1396.
The emission line objects in the typical magnitude interval of 13-16 mag of
these surveys correspond, therefore, to F-G type stars of 1-2 solar masses, at
the 800-1000 pc distance of the region.

Comparing these different surveys one gets only a very limited correspon-
dence between the objects identified by different authors. The reason for that
is partly lying in the temporal variability of the emission nature of these stars
and partly in the uncertainty of recognizing the appropriate spectral features
at low resolution near the detection limit.

The present work was a first attempt to get medium resolution Cassegrain
spectra on a limited sample of objects listed as Ha stars in IC1396 and try
to study their main spectral characteristics.

5.3 Observational data

We selected 35 stars of 11.2-15.2 mag from the list of Kun & Pésztor (1990).
The spectra were obtained with an UAGS Cassegrain spectrograph equipped
with an YMK91B image intensifier attached to the 2.6 m telescope of the
Byurakan Observatory and were recorded on Kodak 103a0 films. We utilized
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a diffraction grating of 651 lines/mm giving a dispersion of 100A/mm. We
scanned the spectra with the PDS 1010 microdensitometer of the Byurakan
Observatory using a 50 x 50 um slit and 25 um step length. We scanned
the background and the calibration spectra (He-Ne-Ar) on both side of the
stellar spectra.

The spectra were analyzed with the help of the AIDA image processing
system developed in Byurakan. The wavelength scales were linearized us-
ing the built in procedure of the AIDA system and all of the spectra were
normalized to 5556A.

Together with the program stars we observed comparison stars of known
energy distribution on each night in order to control the changes of the wave-
length dependency of the sensitivity of the system. In most cases we used
BD +28° 4211 and in some cases BD +40° 4032. The sensitivity curve of the
system was slightly varying from night to night but it was nearly constant
between 4500 — 6400A.

5.4 Statistical analysis of the spectra

Due to the moderate resolution it is not possible to make detailed quantitative
analysis of the spectra; one may only classify the individual stars into different
categories, based on some characteristic spectral features. In the case of
supervised classification one compare the given spectra with a set of apriori
given templates and assigns to the objects those templates which reveal the
highest degree of similarity. On the contrary, the unsupervised classification
does not require a set of templates but it is a byproduct of the appropriate
algorithm.

There are several procedures to perform unsupervised classification. The
procedures require a definition of some measure of similarity (or distance)
between the individual objects which are spectra in our case. Before running
any of these algorithms we extract some basic properties of the observed
spectra by applying factor analysis.

In accordance with Sec. 5.1.2 to perform factor analysis we assume that
the observed spectra are arrays where the wavelength runs in integer steps
along the elements of the array. Let us have a set of observed spectra in
the form of arrays {Si,...,S,}. It can always be represented as a sum of n
orthogonal arrays, i.e.:

Si = Zaijej (510)
=1

where the e; vectors are pair-wise orthogonal and called principal com-
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Table 5.1: Resulted eigenvalues of the principal components analysis

No. Eigen val. Pct.(%) Cum.pct.(%)

1 27.991 80.0 80.0
2 2.251 6.4 86.4
3 127 2.1 88.5
4 .647 1.8 90.3
) 597 1.7 92.0
6 528 1.5 93.5
7 .446 1.3 94.8
8 279 8 95.6
9 217 .6 96.2
10 165 ) 96.7
35 .007 .0 100.0

ponents if the a;; coefficients consist of the elements of the eigenvectors of
R, the matrix of the pair-wise correlations between the S, arrays. Factor
analysis attempts to represent the original arrays by the sum of m < n com-
ponents. If the number of significant physical quantities responsible for the
main characteristics of the spectra is smaller than n we may suppose that
it is also reflected in a smaller number of significant components in the sum
given above.

5.4.1 Results of the factor analysis

Using principal components analysis on the observed spectra one can get
two large eigenvalues of R describing 86.4 % of the variances of the observed
arrays (see Tab. 5.1). This figure can be obtained by computing 7,, according
to the following expression

o
N =1 — 2 (5.11)
A
J=1
Where \; >, ..., > ), are the eigenvalues of the correlations matrix and

m < n. 1, is the relative error in estimating the measured arrays by means

of the linear combination of m eigenvectors of R. In our case 7,, = 0.864.
Besides the a;; coefficients the factor analysis algorithm yielded also the

factor values, the elements of the e; arrays. Since the linear combination of
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e;-s gives the measured spectra the arrays themselves have some similarity
to real spectra. However, they do not necessarily represent real spectra.
They represent real spectra only in that case if at some S; only one of the a;;
coefficients differs significantly from zero. We displayed in Fig. 5.1 the e; and
e, factor arrays belonging to the first two eigenvectors of the R correlation
matrix. The factor arrays are normalized to unit standard deviation and zero
mean value and this explains the range and scale on the vertical axis in the
Figure.

After normalizing to unit variance the original observed arrays the equal-
ity > a?j = 1 is always holding. Keeping only the significant members of
i=1

this sum we get that fraction of the original variances which is explained
by the significant principal components, the factors. This fraction is called
communality. In our case we have two factors. Since the communalities are
always less than unity a3 + a% < 1,(i = 1,....,n), the inequality holds for
all the points representing real spectra in the {a;;as} plane. In Fig. 5.2 we
displayed the distribution of a1, as values obtained from the factor analysis.
Fig. 5.2 clearly shows that the vast majority of the points approaches closely
the unit circle confirming the validity of the two-factor representation of the
original spectra. Some points, however, are well inside this circle. Inspection
them individually reveals that they are underexposed noisy spectra.

The fact that the majority of the points in the {a;; a2} plane approaches
the unit circle indicates that there is only one significant physical variable
responsible for the main properties of the observed spectra.

5.4.2 Clustering spectra according to the factor coef-
ficients

First inspection of the stars in the {a;as} plane shows three major groups.
The biggest one, however, may be splitted into two smaller ones. We ordered
our stars, therefore, into four groups. In order to find the members of the
groups we carried out k-means clustering (see e.g. Murtagh and Heck, 1987).
After finding the group members we computed the average spectra within
the groups.

Since similar spectra mean similar factor coefficients the average spectra
within the groups may serve as templates for further classification. Fig.
5.3a~-d show the template spectra obtained in this way.
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Figure 5.1: The first (solid line) and second (dotted line) most significant
factors resulted from the principal components analysis. The two factors are
orthogonal i.e. [ej(A)ea(A)dA = 0. The observed spectra can be represented
as linear combinations of the factors: S(\) = aje;(\) + azez(N). The factors
are normalized to unit standard deviation and zero mean value and this
explains the range and scale on the vertical axis in the Figure.
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Figure 5.2: Distribution of the factor coefficients on the {a;;as} plane. If
the spectra are well represented by the first two factors a? + a3 is close to
the unity. The Figure clearly shows that the vast majority of the points
approaches closely the unit circle confirming the validity of the two-factor
representation of the original spectra. Some points, however, are well inside
this circle. Inspection them individually reveals that they are underexposed
noisy spectra.
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5.4.3 Classification of the mean spectra

To identify different features on our mean spectra obtained in the previous
paragraph we used templates given in the Bonner Spectral Atlas (Seitter,
1975). In order to get accurate spectral types for the template spectra we
compared them with the spectra listed in the spectral library of Jacoby and
Hunter (1984). Spectra in the library having similar strength of the char-
acteristic lines to those of our program stars have intensity maxima shifted
systematically towards shorter wavelengths. The shift of the intensity max-
ima of the template spectra in comparison with the library spectra of similar
line strength can be accounted for the effect of interstellar reddening. Mul-
tiplying the library spectra with the Whitford’s reddening law (Whitford ,
1958) and varying the value of the visual absorption Ay gives a much better
fit for our template spectra.

Spectrum of group 1: A conspicuous H (3 line is visible in absorption. Nev-
ertheless, one cannot recognize Ha because it would be near to the red edge
of the spectrum which is somewhat underexposed. Otherwise the spectrum
is dominated by neutral metallic lines (Fel, Mgl,). There is some suspect for
the Nal /5890 — 96A doublet. The best matching library spectrum is A8.

Spectrum of group 2: The H[3 line is nearly as conspicuous as at group 1..
In the contrary, the Fel and Mgl lines in the 5160 — 90A range are definitely
stronger than in the previous case. The Nal/5890 — 96A doublet is clearly
visible. Following the same procedure as before we obtained F6 spectral type.

Spectrum of group 3: The strength of the neutral metallic lines increases
in comparison with the previous groups. There is some hint for the H line in
absorption. The Nal/5890 — 96A doublet is very pronounced. The resulted
spectral type is G9.

Spectrum of group 4: The appearance of H/3 is similar to group 3 but the
characteristic metallic lines are more enhanced. The shift of the intensity
maximum towards the red corresponds to the enhancement of the neutral
metallic lines so it might be accounted for the differences of effective temper-
atures between the template spectra of groups 3 and 4. Applying the same
procedure as in the case of previous groups we got K§ for this template.

Fig. 5.3 shows the mean spectra obtained by averaging within the groups
obtained.

The spectral type and effective temperature of the template spectra and
the mean values of factor coefficients within the four groups define a relation-
ship which enables us to assign spectral types and effective temperature to
all of the program stars, after obtaining the coefficients from factor analysis.
Based on the spectral types obtained and the V and BV data of Kun and
Pésztor (1990) we calculated the interstellar reddening for our program stars.
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Figure 5.3: a-d: Spectra obtained by averaging within the groups defined by
clustering the stars on the {a;;as} plane. The physical parameters of the
spectra are summarized in Table 5.2.
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Table 5.2: Physical parameters of the groups obtained

Group T.s(K°) Sp B—-V Ep.y a1 a

1 7500 A8 0.70 A7 .90 .36
2 6000 F6  1.03 53 .85 49
3 2300 GY9 1.78 98 64 .71
4 3920 K8 2.04 90 .36 .87

Averaging the interstellar absorption within the spectral groups defined we
got the mean reddening for the template spectra. Table 5.2 summarizes the
spectral type, effective temperature and interstellar absorption of the tem-
plate spectra obtained and Table 5.3 gives these data for the program stars,
along with «,d and V listed in the paper of Kun and Pésztor (1990).

Inspecting the data of Table 5.2 reveals that the reddening is lower in
groups 1 and 2 and higher in groups 3 and 4. This means that the ba-
sic physical parameter responsible for the differences between the template
spectra is a combined effect of the reddening and the effective temperature.
It is worth mentioning that the reddening obtained from fitting the templates
with the library spectra is systematically lower by about 0.2 mag than those
obtained from the V and BV photometric data.

Although all of our program stars were picked up in previous surveys by
some suspected Ha emission on small scale spectra the template spectra show
no definitive evidence for H«a emission. However, it is quite usual at repeated
small scale spectral surveys on the same field that stars which were detected
at the first coverage do not show any remarkable evidence of emission on the
next occasion. Repeated small scale spectral observations revealed that the
correlation length in time of the suspected Ha emission is in the order of few
days (Balazs et al., 1987). Among our 35 program stars only Kun 193 shows
very strong Hydrogen emission (Fig. 5.4).

5.4.4 Location of the program stars in the HR diagram

In order to put our program stars onto the HR diagram we corrected their
V' colors, given by Kun and Pésztor (1990), for the interstellar extinction
obtained in the previous paragraph. Marschall and van Altena (1987) listed
proper motions for 10 of our stars and 9 seemed to be members of Tr37. We
assume therefore that the vast majority of our objects belong to IC1396 and,
consequently, have a distance modulus of 9.5 mag (Simonson, 1968). The
bolometric correction was taken from the table published by Johnson (1966).

Plotting our stars on the {log,q(L);log,y(T.ss)} plane (Fig. 5.5), along
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Table 5.3: List of the program stars. A semicolon after the spectral type
marks uncertain classification.

No. 1950 91950 V BV Epy T, Sp. ay a3
8 212718 561531 14.02 221 88 3940 K8 .398 .836
15 212844 564535 14.80 241 1.04 380 M3 .280 .910
17 212856 564527 1460 1.48 1.04 6380 F4 865 .465
25 213011 562440 14.49 211 .69 3740 MO .278 .861
41 213324 561929 13.18 1.07 .52 6000 F8 .821 .532
66 213515 574145 14.51 2.19 1.85 6820 F1. .433 .366
68 213517 572201 13.33 .44 A8 7220 FO  .868 .381
315 213519 571741 1268 1.56 .69 5100 KI1: .210 .689
73 213626 572518 14.68 1.39 .11 4080 K7 .466 .828
189 213639 570741 13.06 1.76 1.07 5580 G6 .724 .670
190 213643 570856 13.23 1.23 .72 6140 F6: .514 .465
191 213652 570938 14.30 .77 .34 8980 A2: .599 .222
83 213746 572117 1424 1.18 .76 6480 F3 .868 .453
84 213748 571025 13.84 1.06 .58 6260 F5 .850 .482
8 213751 571016 14.45 1.34 .58 5400 G8 .686 .699
193 213756 564533 14.29 1.37 .65 5500 G7 .656 .677
87 213756 572044 14.07 88 .61 7200 FO .899 .387
89 213813 571233 13.80 .59 A2 6260 F5 865 .483
198 213813 571310 14.54 .62 42 7980 A6 924 333
91 213834 570437 14.55 1.88 .84 4680 K3 .589 .780
330 213839 572808 11.21 .27 -20 6260 F5 857 .481
197 213842 572337 1291 .40 .02 6640 F2 892 437
196 213842 572712 13.20 .65 44 7720 AT .893  .347
93 213847 571744 1348 45 15 7000 F1  .901 403
94 213854 571806 15.03 2.06 .63 3720 M1 .381 .896
204 213922 580523 13.34 219 1.53 5660 G5 .690 .642
97 213926 571660 14.16 .91 .33 5920 GO .799 .557
98 213930 574550 15.13 1.34 .74 5840 G2: .463 .554
205 213949 574959 13.77 1.09 .85 8460 A5 .930 .301
103 21407.1 575938 14.52 2.12 1.36 5380 G9 .581 .690
104 214074 575807 13.86 1.48 .91 5940 GO .808 .555
110 214043 574728 15.04 1.78 .95 5200 KO .579 .718
112 214139 570727 14.05 1.20 .76 6380 F4 .869 .464
114 214125 561356 15.17 .08 -35 6420 F4 .856 .459
115 214128 561506 14.30 1.76 .76 4780 K3 .600 .770
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Figure 5.4: The spectrum of Kun 193. It is the only star in the sample
showing very conspicuous H« emission.

with the evolutionary tracks and isochrones of Forestini (1994), one may infer
that they are pre-main sequence objects with masses of 0.5M, < M < 3M,
and 10° < t < 107 years age.

Simonson (1968) derived an age of 3 x 10° years for this part of the
CepOB2 association.
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Figure 5.5: Distribution of our program stars on the {logyy(L);log;o(Tess)}
plane. Solid lines mark the isochrones and dotted ones the evolutionary
tracks with constant masses. Numbers at the top of the lines show the
logarithm of the corresponding stellar ages and masses, respectively. Stars
with uncertain classification are omitted from this plot.



Chapter 6

Angular distribution of GRBs

6.1 True nature of GRBs

The true physical nature of gamma-ray bursts (GRBs) is one of the tanta-
lizing enigmas of the recent astrophysics. Although since their first detec-
tion (Klebesadel et al., 1973) there were several suggestions trying to give
a clear explanation for their origin, no definite answer has been given yet
(cf. Paczynski, 1995). Recently, the successful identifications made by the
Beppo-SAX satellite, followed by the detection of optical counterparts (van
Paradijs et al., 1997), seem to give firm support for the models putting them
definitely into the cosmological distances. The alternative Galactic origin
seems to be ruled out (a survey of the question of distances may be found,
e.g., in Paczynski (1995)). However, the small number of optically identified
events is far from being enough to characterize the properties of the whole
burst population. On the other hand, the existence of cosmological distances
of GRBs seems to be definite.

In addition, even before this identification, indirect observational evi-
dences were known for the cosmological origin. These evidences were based
mainly on the modifications of < V/Vmaz > test (cf. Norris et al., 1994;
Meészaros P. & Mészaros A., 1995; Norris et al., 1995; Nemiroff 1995; Horvath
et al., 1996), and on the study of the time dilatation (cf. Norris et al., 1995;
Mészaros A. & Mészaros P., 1996; Stern 1996; Mészaros A. et al., 1996; Che
et al., 1997). A further important indirect support of cosmological origin
is based on the observed isotropy on the sky (Briggs, 1993; Syer & Saha,
1994; Briggs, 1995; Tegmark et al., 1996a,b; Briggs et al., 1996). All these
papers suggest that the angular distribution is isotropic, because there are
no statistically significant departures from the isotropy. Also the separations
of GRBs into the different subclasses either due to the duration (Kouveliotou

85
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et al., 1993; Belli, 1995; Dezalay et al., 1996) or due to the fluence on channel
above the 300 keV (Pendleton et al., 1997) do not change the situation; the
proposed subclasses alone also seem to be distributed isotropically. Hence,
it can well occur that the total number of observed GRBs is a mixture of a
wide variety of physically different objects, but all GRBs should be at cos-
mological distances due to their isotropic angular distribution on sky, and
due to other direct and indirect supports.

In the following we find a clear anisotropy of all GRBs, and then sepa-
rately of the short GRBs, too. On the other hand, the long GRBs seem to
be still distributed isotropically. To do this we will use both the standard
analysis based on the spherical harmonics and also the so called binomial
test.

6.2 Mathematical skeleton of the problem

Testing the isotropy on the celestial sphere one may use several methods.
Nevertheless, strictly from the mathematical point of view, the necessary
condition for the isotropy is the stochastic independency of the sky distri-
bution of the bursts on their observed physical properties. It means that, if
f,b,xq, ... ,x,)dFdxy ... dx, is the probability of finding an object in the
dF = cos bdl db infinitesimal solid angle and in the (1, x1 +dxy, ..., Ty, T+
dx,) interval, one must have

f,b,xy, .. ) =w(l,b)g(z, ... xp) (6.1)

Here 0 <1 < 360°, —90° < b < 90° give the celestial positions in Galactic
coordinates, =, (n > 1) measure the physical properties (peak fluxes, flu-
ences, durations, etc...) of GRBs and g is their probability density. It may
well be assumed that in the case of isotropy the distribution of GRBs fulfils
this equation (cf. Briggs et al., 1996; Tegmark et al., 1996a,b).

However, statement (6.1) is only a necessary but not a sufficient condition
for isotropy. Isotropy means that also w(l,b) = (4%. Hence, in this case, for
N observed GRBs the events dN = NwdF', i.e. the expected number of
GRBs in an infinitesimal solid angle, is not depending on [/,b]. In other
words, the isotropy means that the probability of observing a burst in a solid
angle 0 < Q < 47 (£ is in steradians) is given by % and is independent on its
location on the celestial sphere. This follows immediately from (6.1), if one
does integration over [ and b to obtain, first, the solid angle €2, and, second,
the whole sky. Then the ratio of two results gives %, and the concrete form
of g is unimportant.
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The most frequently used procedure to test the isotropy of GRBs is based
on the spherical harmonics (Briggs 1993, 1995; Briggs et al., 1996; Tegmark
et al., 1996a,b). The key idea is the following. In general case one may
decompose the function w(l, b) into the well-known spherical harmonics. One
has:

w(l,b) = (47) "2,

—(m)lﬂ(wL_l cosbsinl — wy j cosbcosl + wy sinb)
T
15 11/ 27 2
—1—((167)) (wa,—2 cos” bsin 2] 4 w5 cos” bcos 21
T

—wsg 1 8in 2bsinl — wq 1 sin2bcos )

5
(16m)

The first term on the right-hand side is the monopole term, the following
three ones are the dipole terms, the following five ones are the quadrupole
terms (cf. Press et al. 1992; Chapt. 6.8). Nevertheless, w is constant for
isotropic distribution, and hence on the right-hand side any terms, except for
wp, should be identically zeros. To test this hypothesis one may proceed, e.g.,
as follows. Let there are observed N GRBs with their measured positions
[l;,b;] (j = 1,2,...,N). In this case w is given as a set of points on the
celestial sphere. Because the spherical harmonics are orthogonal functions,
to calculate the wyy coefficients one has to compute the functional scalar
products. For example, w, _; is given by

+( )" 2wo(3sin® b — 1) + higher order harm. (6:2)

Wo,—1 =
15 /2 27
_(T)l/2 / Cosbdb/w(l,b) sin 2b sin [dl
( W) —7/2 0
= —( 15 )1/21\/—1%5111 20, sin 1. (6.3)
(167) ot J J

Because w is given only in discrete points, the integral is transformed
into an ordinary summation (cf. Kendall & Stuart (1973)). In the case of

N
isotropy one has wy _; = 0, and hence N=! 3~ sin 2b;sin [; = 0. therefore,
j=1
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the expected mean of sin 2b; sin [; values is zero. One has to proceed similarly
to any other wyy coefficient.

In order to test the zero value of, e.g., we 1 one has to calculate, first,
sin 2b; sinl; forany j = 1,2,..., N and, second, the mean, standard deviation
and Student’s ¢ variable (cf. Press et al. 1992, Chapt. 14). Finally, third,
one has to ensure the validity of zero mean from Student test. As far as it is
known, no statistically significant anisotropy of GRBs were detected yet by
this procedure (cf. Briggs et al., 1996; Tegmark et al., 1996a,b).

Nevertheless, there are also other ways to test the isotropy. An extremely
simple method uses the binomial distribution. In the remaining part of this
section we explain this test (see also Mészédros A., 1997).

In order to test the anisotropy by this method one may proceed as follows.
Let us take an area on the sky defined by a solid angle 0 < Q < 47 (Q is
in steradians). In the case of isotropy the p probability to observe a burst
within this area is p = %. Then, obviously, ¢ = 1 — p is the probability to
have it outside. Observing N > 0 bursts on the whole sky the probability to
have k bursts (it may be k = 0,1,2,..., N) within € is given by the binomial
(Bernoulli) distribution taking the form

N -
Py(N, k) = mpkqjv g (6.4)

This distribution is one of the standard probability distributions discussed
widely in statistical text-books (e.g. Trumpler & Weaver, 1953; Kendall and
Stuart, 1973; about its use in astronomy see, e.g., Mészaros, 1997). The
expected mean is Np and the expected variance is Npqg. One may also
calculate the integral (full) probability, too, by a simple summation.

In our case we will consider N GRBs, and we will test the hypothesis
whether they are distributed isotropically on the sky. Assume that k. is
the observed number of GRBs at the solid angle 2. If the apriori assumption
is the isotropy, i.e p = (4%), then one may test whether the observed number
kops is compatible with this apriori assumption. Of course, any 0 < kys < N
can occur with a certain probability given by the binomial distribution. But,
if this probability is too small, one hesitates seriously to accept the apriori
assumption.

Consider the value |kops — Np| = ko. The value kg characterizes ”the de-
parture” of ks from the mean Np. Then one may introduce the probability

P(N, kops) =1 = Bpiot(N, (Np + ko)) + Pytot (N, (Np — ko)) (6.5)

P(N, kops) is the probability that the departure of ks from the Np mean
is still given by a chance.
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Table 6.1: Student test of the dipole and quadrupole terms of 2025 GRBs.
In the first column the coefficients defined in Eq. (6.2) are given. In the
second column the Student t is provided. The third column shows the
probability that the considered terms are still zeros.

t %
w11 151 134
Wi,1 1.77 7.7
Ww1,0 0.71 47.7
) 2.76 0.6
wyy 154 121
w1 326 0.1
W21 0.98 33.3
w20 0.36 71.9

In order to test the isotropy of the GRBs celestial distribution we will
divide the sky into two equal areas, i.e we will choose p = 0.5. It is essential to
note here that neither of these two parts must be simply connected compact
regions.

6.3 Anisotropy of all GRBs

In order to test the isotropy of GRBs we will test the three dipole and five
quadrupole terms in accordance with the method described in the previous
section. We will consider all GRBs that have well-defined angular positions.
Up to the end of year 1997 there were 2025 such objects at Current BATSE
catalog (Meegan et al. 1997; Paciesas et al. 1998). The results are summa-
rized in Table 6.1.

We see that, except for the terms defined by we _; and wy _9, the remaining
six terms may still be taken to be zero. This means that there is a clear
anisotropy defined by term ~ sin 2bsin [. The probability that this term is
zero is than 0.1%. It is practically sure that the second quadrupole term
being proportional to ~ cos?bsin 2/ is non-zero, too.

The anisotropy defined by wy _; may be defined in another form, too.
This quadrupole term has a positive sign, when both sin2b and sin/ have
the same signs, and has a negative sign, when sin/ and sin 2b have opposite
signs. Therefore, let us define two parts of the sky having the same sizes (27
steradians). The first one is defined by Galactical coordinates b > 0,1 > 180°
and b < 0,0 < [ < 180°. This means that this first part is in fact composed
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from two separated ”sky-quarters”. The second part is then given by b >
0,0 <[ < 180° and b < 0,1 > 180°. This means that this second part is
also given by two separated "sky-quarters”. Then the detected quadrupole
anisotropy suggests that there should be an essential difference, e.g., in the
number of GRBs in these two parts.

In order to test again this expectation we will do the test based on
Bernoulli distribution. We divide the whole sky into these two parts, and
hence we expect a Bernoulli distribution with p = 0.5 for N = 2025. As it
is noted in Sect. 6.2, it is certainly allowable that these parts are composed
from several subregions.

A straightforward counting of GRBs in these regions shows that 930 GRBs
are in the first one and 1095 are in the second. Assuming p = 0.5 the
binomial (Bernoulli) test gives a 0.03% probability that this distribution is
caused only by a chance. Hence, the relatively smaller number in the first
region compared with the second one is not a chance, and the distribution
of all GRBs is anisotropic with a high probability.

Clearly, concerning the consequences of the intrinsic anisotropy of GRBs,
one must be still careful. Instrumental effects of the BATSE experiment may
also play a role, and in principle it can also occur that the detected anisotropy
is caused exclusively by instrumental effects. To be as correct as possible,
one may claim that, in essence, there can be three different causes of this
observed anisotropy: a. The anisotropy is purely caused by the BATSE’s
nonuniform sky exposure (in other words, the intrinsic angular distribution
of GRBs is still isotropic, and the observed anisotropy is a pure instrumental
effect); b. The anisotropy is purely given by the intrinsic anisotropy of GRBs,
and the instrumental effects are unimportant; c. The anisotropy is given both
by instrumental effects and also by the intrinsic anisotropy. To be sure that
there is also an intrinsic anisotropy of GRBs, one must be sure that the
possibility a. does not occur. In what follows, when we will speak about
"the possibility a.”, we will consider this one.

It is well-known that the sky exposure of the BATSE instrument is
nonuniform. This question is described and discussed in several papers (cf.
Briggs, 1993; Fishman et al., 1994; Tegmark et al., 1996a,b; Briggs et al.,
1996). The BATSE sky coverage depends on the declination only in the
equatorial coordinate system (Tegmark et al., 1996b) in such a manner that
the probability of detection is about 10% higher near the pole than near the
equator. This behavior in Galactic coordinates predicts excess numbers of
GRBs just in sky-quarters given by b > 0,0 < [ < 180° and b < 0,1 > 180°.
Hence, in principle, it is well possible that the observed anisotropy is caused
by a pure instrumental effect. The purpose of Sect. 6.4 is to show that this
is not the case, and the possibility a. should be excluded.
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6.4 Different distribution of short and long
GRBs

If there is an intrinsic isotropy indeed, then Eq. (6.1) will continue to fulfill,
and w(l,b) itself will reflects the non-uniformity of sky-coverage. Then at
the first part the number of observed GRBs should be smaller, because the
integrations of w(l, b)dF giving the first and second part, respectively, do not
give the same values. Their ratio should be ~ 930/1095 = 0.85. This ratio
should be obtained for any subset of GRBs, when the choice of this subset is
based on some physical properties of the bursts, because the function g does
not enter into the calculation for X. In other words, if the level of anisotropy
depends on the physical parameters of GRBs, then ”the possibility a.” should
be excluded.

To be extra cautious it is also necessary to remember that some bias may
arise for the dimmest GRBs, because for them it is not necessarily true that
the total exposure time is exactly proportional to the observed number of
sources due to the varying threshold limit of BATSE (see Tegmark et al.,
1996a for the discussion of this question). To avoid this bias the simplest
procedure is not to take into account the dimmest GRBs.

All this allows to exclude the possibility a. quite simply. To do this it is
necessary to take some subsets of GRBs, and to verify for any of them that
the ratio X is roughly 0.85. For security, it is also necessary to omit the
dimmest GRBs.

For the sake of maximal correctness we will not use any ad hoc criteri-
ons to define such subsets, but we will exclusively use criterions which were
introduced earlier by others. First, we exclude any GRBs having the peak
fluxes on 256 ms trigger smaller than 0.65 photons/(cm?s). The truncation
with this threshold is proposed and used in Pendleton et al. (1997). Second,
from the remaining GRBs we exclude GRBs which have no defined duration
Too (for the definition of this duration see Kouveliotou et al. (1993)). Third,
we also exclude the bursts which have no f3 value, which is the fluence on the
energy channel [100, 300] keV'. These truncations are also necessary, because
we will consider the subsets, for which the criterions use Ty and fs.

932 GRBs remain, and from them 430 are at the first part, and 502 are
at the second one. Hence, here X = 430/502 = 0.86. There is no doubt that
this "truncated” sample of GRBs is distributed similarly to that of whole
sample with 2025 GRBs. The probability that this distribution is given by a
chance is here 2%. (Note that, of course, here the same X does not give the
same probability, because there is a smaller number in the sample.)

932 GRBs will be separated, first, into the "short” and ”long” subclasses
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Table 6.2: Results of the binomial test of subsamples of GRBs with
different durations. NN is the number of GRBs at the given subsample, k.
is the observed number GRBs at the first part in this subsample, and %
is the probability in percentages that the assumption of isotropy is still valid.

sample N kops (N —kos) %
all GRBs 932 430 502 2.0
Tog < 1s 206 82 124 0.43
Too < 2s 251 103 148 0.55
Ty < 10s 372 154 218 0.11

Ty > 2s 681 327 354 32
Ty > 10s 560 276 284 7
Ty > 15s 507 247 260 59

(cf. Kouveliotou et al., 1993), and, second, into the No-High-Energy (NHE)
and High-Energy (HE) bursts (Pendleton et al., 1997).

The boundary between the short and long bursts is usually taken for Ty, =
2s (Kouveliotou et al., 1993; Belli, 1995; Dezalay et al., 1996). Nevertheless,
this boundary at Tyy = 2s is not so precise (e.g. in Katz & Canel (1996) Ty =
10s is used). In addition, this boundary gives no definite strict separation,
because at class Tyg < 2s long bursts, and at class Ty, > 2s short bursts
are also possible, respectively (cf. Belli, 1995). Therefore, in order to test
more safely the distribution of two subclasses, we will consider also the case
when the boundary is at Ty, = 10s. We will consider also the subsamples
of GRBs having Ty, < 1s, and Ty, = 15s, respectively, because then they
contain surely only short and long bursts, respectively. The results are shown
in Table 6.2.

Table 6.2 shows, e.g., that there are 251 GRBs with Ty, < 2s, and 681
GRBs with Tyg > 2s. Then, from the short GRBs 103 are at the first part of
sky and 148 at the second one. This gives X = 103/148 = 0.70. It seems that
at the first part there is even a smaller portion of shorter GRBs than that of
the all GRBs. The probability that this is a chance is given by 0.55%. On
the other hand, from the long GRBs 327 are at the first part and 354 at the
second one. This gives X = 327/354 = 0.92. Hence, it seems immediately
that for the long GRBs the isotropy is still an acceptable assumption. The
binomial test quantifies: there is a 32% probability that this distribution is
given by a chance. Doubtlessly, the long GRBs are distributed more isotrop-
ically than the short ones; there is no statistically significant departure from
isotropy for long GRBs. The subsamples Tyg < 1s and Ty < 15s confirm this
expectation; the boundary at Tgy = 10s also does not change the conclusion.
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Table 6.3: Results of the binomial test of NHE-HE subsamples of GRBs.
The subsamples NHE1, HE1, NHE2, HE2 are explained in the text.

sample N kgps (N — Kups) %

all GRBs 932 430 502 2.0
NHE1 131 52 69 14.9
HE1 693 327 366 14.9
NHE2 168 69 99 2.5
HE2 764 361 403 13.8

One may claim that the anisotropy of short GRBs is statistically significant,
but for long GRBs it is not.

Doubtlessly, the short and long subclasses are distributed differently. This
also excludes the possibility a.; the observed anisotropy of all GRBs cannot
be caused exclusively by instrumental effects. It is difficult to imagine an
instrumental effect which leads to isotropy of long GRBs and to anisotropy
of short GRBs.

Pendleton et al. (1997) introduces the subclasses of HE and NHE bursts.
The criterion depends on the ratio f;/fs, where f3 is the fluence on en-
ergy channel [100,300] keV and f; is the fluence on the energy channel
[> 300] keV. (From this it is also clear, why we needed non-zero f3 . On
the other hand, f; can be vanishing; these GRBs are simply NHE bursts.)
Application of this criterion is not so simple, because for a great portion of
GRBs there are large uncertainties of the values of f; due to their errors.
Concretely, for 693 GRBs the value of f; is bigger than the corresponding
error of this; for 131 GRBs there is no fy; for the remaining 108 GRBs there
are some values of fy at the current BATSE catalog (Meegan et al., 1997),
but they are smaller than their errors. Hence, 693 GRBs can be taken as
HE bursts (HE1 subsample). 131 GRBs having no f; may be taken as NHE
bursts (NHE1 subsample). We did binomial tests for these two subclasses.
Separation of the remaining 108 GRBs into the HE and NHE subclasses is
not so clear. We consider artificially the boundary as follows: If the value
of f4 is bigger than the half of error, then we have HE; otherwise NHE. Ap-
plying this criterion we will have 168 NHE (NHE2 subsample) and 764 HE
bursts (HE2 subsample). For them the binomial tests were also done. The
results are collected in Table 6.3.

Table 6.3 gives an ambiguous result. Due to the smaller number in sub-
classes no anisotropy is confirmed yet on a satisfactorily high level of signifi-
cance. In addition, contrary to the short-long separation, there is no obvious
difference between HE and NHE classes.
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6.5 Discussion

The quadrupole anisotropy reported in the previous section is an unexpected
and new result. As far as it is known no anisotropy terms were detected
yet (cf. Tegmark et al., 1996a,b). Probably this situation was given by the
fact that the majority of these isotropy studies concentrated the effort into
dipole and ws quadrupole terms, which are expected to differ from zero, if
the GRBs are arisen in the Galaxy.

The essentially different angular distribution of short and long GRBs sug-
gests that their separation into these two subclasses has a deeper cause. It
is well-known that in average the short bursts have higher hardnesses (hard-
ness =f3/fa , where fs is the fluence on energy channel [50, 100] keV). Katz
& Canel (1996) have also shown that the < V/V,q, > values are different;
the smaller value for longer GRBs suggests that they are on average at big-
ger cosmological distances. Keeping all this in mind it seems to be definite
that these two types are physically different objects at different cosmological
scales.

Contrary to this, we did not find any significant difference in the angular
distribution of HE and NHE subclasses. This is an unclear result, because
in Pendleton et al. (1997) it is clearly stated that the < V/V,,. > values
are different for the HE and NHE subclasses, and hence they should also be
at different distances. The isotropy tests do not confirm this expectation.
This also means that the separation based on the most energetic channel
remains unclear. In fact, the question of fourth channel is highly topical
recently, because Bagoly et al. (1998) shows - independently on Pendleton
et al. (1997) - that f; alone is an important quantity. The question of most
energetic channel trivially needs further study, and is planned to be done.

At the end of Sect. 6.3 we pointed out that the dependence of the BATSE
detection probability on the declination may mimic some sort of anisotropy.
Therefore, without a detailed correction in accordance with the sky exposure
function one may state only the presence of an intrinsic anisotropy from the
different behavior of short and long bursts. The requirement of the study of
this correction for both subclasses is trivial, and is planned to be done in the
near future.

One may also speculate that the short GRBs can arise in the Galaxy
and the long ones at cosmological distances. (About the cosmological origin
of long GRBs there seems to exist no doubt; see, cf., Mészaros A. et al.,
1996). The existence of non-zero wy 1 and probably also of wy _5 quadrupole
terms with the simultaneous zeros for other dipole and quadrupole terms is
a strange behavior for any objects arising in the Galaxy. E.g., it is highly
complicated to have an wy 1 term, and simultaneously not to have the wy
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term, if the sources have arisen in the Galaxy. Simply, any objects in the
Galaxy should have fully different anisotropy terms (for further details and
for the survey of earlier studies of isotropy see, e.g., Briggs (1993), (1995);
Briggs et al. (1996); Tegmark et al. (1996a,b), Meegan et al. (1996)).

Remark also the following. The so called transition scale to homogeneity
(cf. Mészéros A., 1997) is minimally of size ~ 300h~! Mpc (h is the Hubble
constant in units 100km/(s Mpc)). This means that up to this distance
an inhomogeneous and anisotropic spatial distribution is not only possible
but it is even expected. In addition, at the last time several observational
implications, both from the distribution of galaxies and from the anisotropy
of cosmic microwave background radiation, highly query the fulfilment of
homogeneity and isotropy even up to the Hubble scale (Lauer & Postman,
1994; Slechta & Mészaros A., 1997; Mészaros A. & Vansek, 1997; Coles, 1998;
Sylos-Labini et al., 1998). Hence, as far as anisotropy concerns we think that
the different distribution of short and long GRBs and their cosmological
origin are not in contradiction, and we further mean that all GRBs are at
cosmological distances.
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Chapter 7

Classification of GRBs

7.1 Formulation of the problem

It is a great challenge to classify the gamma-ray bursts (GRBs) into sub-
classes. Mazets et al. (1981) and Norris et al. (1984) suggested that the
duration alone might be a good classification parameter in order to separate
the objects into subclasses. Using the First BATSE Catalog Kouveliotou et
al. (1993) found a bimodality in the distribution of the logarithms of the
durations. This bimodality is highly pronounced, if one uses the parameter
Ty (the time during which 90% of the fluence is accumulated (Kouveliotou
et al. , 1993)) for characterizing the durations of GRBs (McBreen et al. |
1994; Koshut et al. , 1996; Belli , 1997; Pendleton et al. , 1997). Today it is
widely accepted that the physics of these two subgroups (also ”subclasses” or
simply "classes”) are really different, and these two kind of GRBs are really
different phenomena (Norris et al. |, 2001; Balédzs et al. , 2003). Note that the
high redshifts and the cosmological distances are directly confirmed for the
long bursts only; while for the short ones there are only indirect evidences
for the cosmological origin (Mészaros , 2001, 2003).

Using the Third BATSE Catalog (Meegan et al., 1996) Horvéath (1998)
has shown that the distribution of the logarithms of the durations of GRBs
(log Typ) could be well fitted by a sum of three Gaussian distributions. He
finds statistically unlikely (with a probability ~ 107*) that there are only
two subgroups. Somewhat later several authors (Mukherjee et al., 1998;
Hakkila et al., 2000c; Balastegui et al. , 2001; Rajaniemi & Méahonen |,
2002; Borgonovo , 2004) included more parameters into the burst analysis
(e.g. peak-fluxes, fluences, hardness ratios, etc.). A cluster analysis in this
multidimensional parameter space suggests the existence of the third (”inter-
mediate”) subgroup as well (Mukherjee et al., 1998; Hakkila et al., 2000c).

97
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On the other hand, the physical existence of the third group is, however, still
not convincingly proven. For example, Hakkila et al. (2000) believes that
the third subgroup is only a deviation caused by a complicated instrumental
effect, which can reduce the durations of some faint long bursts. However,
the sky distribution of the third subgroup is anisotropic (Mészéros et al. |
2000a,b; Litvin et al. , 2001); i.e. different to that of the long GRBs alone
(Mészéros & Stocek , 2003). The logN-logS distribution may also differ from
those of the other groups (Horvath, 1998). All this means that the existence
of the third intermediate subgroup is acceptable, but its physical meaning,
importance and origin is less clear than those of the other subgroups. Hence,
its further study is highly required.

Using the Principal Component Analysis (PCA) Bagoly et al. (1998) has
shown that there are only two major quantities necessary (the so called Prin-
cipal Components; PCs) to characterize all the properties of the bursts in the
BATSE Catalog. The first PC accounts for the duration and the fluence; the
second one for the peak-fluxes. Consequently, the problem of the choice of
the relevant parameters describing GRBs is basically a two dimensional prob-
lem. For the statistical analysis the choice of two independent parameters
is enough; they may, but not necessarily, be the two principal components.
Recently Balazs et al. (2003) has used a two dimensional analysis and has
shown that the two subgroups (short and long ones) are really different phe-
nomena. The most remarkable difference is seen if the hardness (Meegan
et al., 1996) and the duration are used as the two different independent pa-
rameters. The short and long GRBs are different in both these independent
variables. All this means that only two - relevantly and correctly chosen -
parameters should be enough for the classification and determination of the
subgroups, too. Therefore, a detailed two-dimensional analysis - using the
duration and hardness - in the classifications is well supported and highly
needed. This will be done here concentrating our effort with respect to the
third intermediate subgroup.

Several questions should be answered concerning the intermediate sub-
group. First, will the statistical analysis, using only these two different pa-
rameters, reconfirm the existence of the intermediate subgroup? Second, if
this question is positively answered, then one has to show that either further
subgroups exists, or not. This is a fully open question. Mukherjee et al.
(1998) claims that only three subgroups are necessary; on the other hand,
Cline et al. (1999) proclaims the existence of a fourth subgroup having very
short durations. Third, one also has to define the quantities, in which this
third subgroup is different. Hardness and the duration seem to be the best
parameter; but other choices may also be possible. This should be clarified.
Fourth, the method - allowing to assign a given concrete GRB to a given
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subgroup - should be developed, too. The simple separation with respect to
Ty is surely rough, of course. A better one is clearly needed. Fifth, the frac-
tion of this third intermediate subgroup in the whole BATSE Catalog should
also be determined more exactly. Sixth, as it was noted, the intermediate
subclass shows a remarkable anisotropy in the angular sky distribution. Con-
firmation or the rejection of this behaviour is also required. Seventh, does
the intermediate group really represent a third type of bursts different from
both the short and long ones by its astrophysical origin?

Searching for answers to these questions is the aim of this chapter. The
observational data from the BATSE Current GRB Catalog (Meegan et al.,
2001) will be used, in which there are 2702 GRBs; from them 1956 GRBs
have both measured hardnesses and durations. These 1956 GRBs define the
sample studied in this chapter.

7.2 Mathematics of the two-dimensional fit

We will study the distribution of GRBs in the [log Ty, log Hss] plane. Previ-
ously Belli (1997) used this plane to separate the bursts. She suggested that
the curve H3y = 2T§(55 gave a better division than the cut Ty = 2 s between
the short and long GRBs.

We may assume that the observed probability distribution of the GRBs in
this plane is a superposition of the distributions characterizing the different
types of the bursts being present in the sample. Introducing the notations
x = log Ty and y = log H3s and using the law of full probabilities (Rényi ,
1962) we may write

k

p(z,y) =Y plz,y|l)p. (7.1)

=1

In this equation p(x, y|l) is the conditional probability density assuming that
a burst belongs to the [-th class. p; is the probability for this class in the

k
observed sample (Y p; = 1), where k is the number of classes. In order to de-
=1

compose the observed probability distribution p(x,y) into the superposition
of different classes we need the functional form of p(z,y|l). The probability
distribution of the logarithm of durations can be well fitted by Gaussian dis-
tributions, if we restrict ourselves to the short and long GRBs, respectively
(Horvath (1998)). We assume the same for the y coordinate as well. With
this assumption we obtain for a certain [-th class of GRBs a two dimensional
Gaussian in the form of
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p(l‘?yll) = 271.0.10.;1/1712

T—ag)? —ay)?
X exp |:— 2(1£r2) <( 52 ) + (y UQy) _ o'zct;'y)] , (72)

Yy

where C' = 2r(x — a,)(y — ay); a,, a, are the means, o,, o, are the
dispersions, and r is the correlation coefficient (Trumpler & Weaver (1953);
Chapt. 1.25). Hence, a certain class is defined by 5 independent parameters,
Ay, Ay, 04, 0y, 7, which are different for different /. If we have k classes, then
we have (6k — 1) independent parameters (constants), because any class is
given by the five parameters of Eq.(7.2) and the weight p; of the class; one

k
weight is not independent, because it holds Y p; = 1. Sum of k£ functions

=1
defined by Eq.(7.2) gives the theoretical function of the fit. In Baldzs et al.
(2003) this fit for k = 2 was used, and procedure for k = 2 was described in
more details. However, that paper used fluence instead of hardness. We will
make here similar calculations for k£ = 3 and k = 4, as well.

7.3 Confirmation of the intermediate group

We mentioned in the previous section that by decomposing p(x,y) into the
superposition of p(x,y|l) conditional probabilities one divides the original
population of GRBs into k subgroups; at least from the mathematical point
of view. Dissolving the left-hand-side of Eq.(7.1) into the sum of the right-
hand-side, one needs the functional form of p(z,y|l) distributions, and k& has
to be fixed, too. Because we assume that the functional form is a bivariate
Gaussian distribution (see Eq.(7.2)), our task is reduced to the estimation of
its parameters, to the values of k and p;-s.

In order to get the unknown constants in Eq.(7.2) we use the Maximum
Likelihood (ML) procedure of parameter estimation (Baldzs et al. |, 2003).
Assuming a set of N observed [z;,y;], (i = 1,..., N), values (N is the number
of GRBs in the sample for our case, which here is 1956) we may define the
Likelihood Function in the usual way, after fixing the value of &, in the form

L= Zlogp(xi, Yi) (7.3)

=1

where p(x;,y;) has the form given by Eq.(7.1). Similarly, as it was done by
Balazs et al. (2003), the EM (Expectation and Maximization) algorithm is
used to obtain the a,,a,,0,,0,, 7 and p; parameters at which L reaches its
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Table 7.1: Results of the EM algorithm. k =2 L, = 1193

D Ay Qy O o r
1 280 -.233 .740 .541 .239 .049
2 720 1488 .396 471 237 128

Table 7.2: Results of the EM algorithm. £k =3 L., = 1237

Y Uy Qy Oy oy r

1 .245 -301 .763 .525 .251 .163
2 109 .637 .269 474 .344 -.513
3 .646 1.565 .427 416 .210 -.034

maximum value. We made the calculations at different values of £k in order
to see the improvement of L as we increase the number of the parameters to
be estimated.

Tables 7.1-7.3 summarize the results of the fits for &k = 2,3, 4.

Similarly to Sec. 4.3.2 the confidence interval of the parameters estimated
can be given on the basis of the following theorem. Denoting with L,,., and
L the values of the Likelihood Function at the maximum and at the true
value of the parameters, respectively, one may write asymptotically as the
sample size N — oo (Kendall & Stuart, 1973)

2(Limae — Lo) = Xiw (7.4)

where m is the number of the parameters estimated (m = 6k — 1 in our
case), and x?, is the usual m-dimensional x? function (Trumpler & Weaver,
1953). Moving from k = 2 to k = 3 the number of parameters m is increasing
by 6 (from 11 to 17), and Ly, is growing from 1193 to 1237. Since Y%, =
X%ﬁ‘ X% the increase in L,,,, with a value of 44 corresponds to a value of 88 for

Table 7.3: Results of the EM algorithm. &k =4  L,,,, = 1243

|2 Qg @y Oy oy r
234 -307 752 524 246 .215
060 441 426 .637 .440 -.871
060 .623 .262 .325 .325 -.095
646 1.569 426 .410 .211 -.034

=~ W N | e~
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a 2 distribution. The probability for yZ > 88 is extremely low (< 1071°), so
we may conclude that the inclusion of a third class into the fitting procedure
is well justified by an extremely high level of significance.

Moving from k = 3 to k = 4, however, the improvement in L,,,, is only
6 (from 1137 to 1143) corresponding to xZ > 12, which may happen by a
chance with a probability of 6.2 %. Hence, the inclusion of the fourth class
is not justified. We may conclude from this analysis that the superposition
of three Gaussian bivariate distributions satisfactorily describes the observed
distribution.

This means that the 17 constants for £k = 3 in Table 7.2 define the pa-
rameters of the three subgroups. We see that the mean hardness of the
intermediate subclass is very low - the third subclass is the softest one. Be-
cause py = 0.109, 11% of all GRBs belongs to this subgroup. This value is
very close to the previous ones (Mukherjee et al., 1998; Hakkila et al., 2000c;
Horvath , 2002).

7.4 Mathematical classification of GRBs

7.4.1 The method

Based on the calculations in the previous Section we resolved the p(z,y)
probability density of the observed quantities into a superposition of three
Gaussian distributions. Using this decomposition we may classify any ob-
served GRB into the classes represented by these subgroups. In other words,
we develop a method allowing us to obtain, for any given GRB, its three
membership probabilities defining how likely this GRB belongs to the short,
intermediate and long subgroups, respectively. The sum of these three prob-
abilities is unity, of course. For this purpose we define the following [;(z, y)
indicator function, which assigns a membership probability for each observed
burst in a given [ class as follows:

Ifa.y) = LD (75

l; pip(z, y|l)

According to Eq.(7.5) each burst may belong to any of the classes with a
certain probability. In this sense one cannot assign a given burst to a given
class with a certainty, but with a given probability. This type of classification
is called "fuzzy” classification (McLachlan & Basford , 1988). Although,
any burst with a given [x,y] could be assigned to all classes with a certain
probability, one may select that [ at which the I;(x,y) indicator function
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Figure 7.1: Distribution of N = 1956 GRBs in the {log;, Too;logo Hs2}
plane. The 1o ellipses of the three Gaussian distributions are also shown,
which were obtained in the ML procedure. The different symbols (crosses,
filled circles and open circles) mark bursts belonging to the short, interme-
diate and long classes, respectively.

reaches its maximum value. Figure 7.1 shows the distribution of GRBs in
the {logy,To0;10g,o Hs2} plane, in which the classes obtained in this way
are marked with different symbols. The 1o ellipses of the three Gaussian
distributions are also shown.

7.4.2 Application of the fuzzy classification

Inspecting Figure 7.1 one may recognize immediately that the domain within
the ellipse of the intermediate group is only partly populated by GRBs be-
longing to this class according to the classification procedure described above.
The remaining part is dominated by GRBs classified into the short and, in
particular, the long subgroup. In other words, the ellipse of the third sub-
group contains an essential amount of GRBs, which should belong either to
the long subgroup or to the short subgroup. Due to the fuzzy’ classification
some probability was also assigned to the other classes. Based on the analyt-
ical expressions of the components one may easily calculate the contribution
of any other groups within the ellipse of a given class by summing up the
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I)(z,y) values of different [-s for the bursts lying in this particular region.

The reliability of the classification can be characterized by counting the
different classes of the GRBs lying within the 1o ellipse of a given Gaussian
component. If the classification was correct only those GRBs are within
the ellipse of a given [ which have classes corresponding to this component.
Denoting with n; the number of GRBs within the ellipse belonging to subclass
[ one gets n; = 298, ny = 291, ng = 827. The rows of Table 7.4 give the
number of GRBs of all classes within the 1o ellipses of the short, intermediate
and long Gaussian components. The first row shows that in the ellipse,
which defines the short subgroup, there are 298 GRBs; in accordance with
the fuzzy classification all have the biggest probability assigning them to the
short subgroup. Similarly, the third row shows that in the ellipse, which
defines the long subgroup, there are 827 GRBs; all in accordance with the
fuzzy classification have the biggest probability assigning them to the long
subgroup. But in the second row, which defines the number 291 of GRBs
being in the ellipse defining the intermediate subgroup, only 65 bursts have
the biggest probability assigning them to the intermediate subgroup; further
67 (159) GRBs should belong to the short (long) subclass.

Table 7.4: Number of GRBs classified by the procedure described in the
text, within the 1o ellipses of [ = 1, 2,3 Gaussian components.

l short interm. long Total
1. 298 - - 298
2. 67 65 159 291
3 - - 827 827

Total 365 65 986 1416

Table 7.4 demonstrates convincingly that the classification of the short
and long GRBs are very reliable, since they do not have excursors from the
other two classes. This means that GRBs within the ellipse of the first and
third class (first and third row in Table 7.4) were classified well as short and
long, respectively. In contrast, the ellipse of the intermediate component
(second row) contains a significant number of the two remaining classes, in
particular from the long ones. This is caused predominantly by the closeness
of the most numerous long class to the intermediate one.

There are N — (ny + ny + n3) = 440 GRBs sprinkling over a much larger
area outside the ellipses. In this region the Gaussian components give low
probabilities. The indicator function can have still a large value, however,
because there are small numbers in both the nominator and denominator of
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the right-hand-side of Eq.(7.5). Although the classification of these bursts is
formally correct, it is less reliable than those within the ellipses.

7.5 Physical differences between classes

The mathematical deconvolution of the p(z, y) joint probability density of the
observed quantities into Gaussian components does not necessarily mean that
the physics behind the classes obtained mathematically is really different. It
could well be possible that the true functional form of the distributions is not
exactly Gaussian and the algorithm of deconvolution inserts only formally a
third one in order to get a satisfactory fit.

Recently Balazs et al. (2003) found compelling evidences that there is a
significant difference between the short and long GRBs. This might indicate
that different types of engines are at work. The relationship of long GRBs
to the massive collapsing objects is now also observationally well established
(Mészaros , 2003), and the relation between the comoving and observed time
scales is well understood (Ryde & Petrosian , 2002). The short bursts may
be identified with neutron star (or black hole) mergers (Mészéros , 2001).
So the mathematical classification of GRBs into the short and long classes -
obtained also here (see Table 7.1 for k = 2) and in Baldzs et al. (2003) - is
also physically justified.

An important question has to be answered in this context: Does the inter-
mediate group of GRBs, obtained in the previous paragraph from the mathe-
matical classification, really represent a third type of bursts being physically
different from both the short and long ones?

The classification into the short, intermediate and long classes proceeds
mainly according to the durations. One may infer from Table 7.2 that these
three classes differ also in the hardness. The difference in the hardness be-
tween the short and long group is well known (Kouveliotou et al. , 1993).
According to these data the intermediate GRBs are the softest ones among
the three classes. This different small mean hardness and also the differ-
ent average duration suggest that the intermediate subgroup should also be
a different phenomenon; simply, both in hardness and in the duration also
the third subgroup is differing from the remaining two ones. On the other
hand, no correlation exists between the hardness and the duration within
the short and the long classes. More precisely, no correlation exists for the
long subgroup; very weak for the short subgroup (see Table 7.2). In other
words, these two quantities may be taken as two independent variables, and
the short and long subgroups are different in both these variables.

In contrast, there is a strong anticorrelation between the hardness and
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Figure 7.2: Distribution of 68 GRBs of the intermediate subclass in Galac-
tic coordinates; the faintest bursts with P < 0.65 photons/(cm? s) are
omitted.

the duration within the intermediate class. This is a surprising new result,
and because the hardness and the duration are not independent in the third
subgroup, one simply may say that only one significant physical quantity is
responsible for accounting the hardness and the duration within the interme-
diate subgroup. Consequently, the situation is quite different here, because
one needs two independent variables for describing the remaining two other
subgroups. This is a strong constraint for modelling the third subgroup.
Hence, the question of the true nature of the physics in the intermediate
subgroups remains open, and - trivially - it needs further detailed studies.
In previous papers (Mészéaros et al. , 2000a,b) evidences were found that
the angular sky distribution of the GRBs with duration 2 s < Tyy < 10 s is not
isotropic. In order to avoid the incompleteness problems, we clipped here the
bursts with the peak-flux on the 256 ms trigger Pasg < 0.65 photons/(cm?s)
(Pendleton et al. , 1997) from our new definition of the intermediate subclass,
and plotted the rest of the intermediate class into the celestial sphere as dis-
played in Figure 7.2. Inspecting it, one may infer that from the 68 GRBs 24
are in the 0 < [ < 180 degree range, while 44 are in the 180 < [ < 360 de-
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gree range. Assuming that this difference occurs by chance, i.e. both ranges
have equal probability, we get from the binomial test that on a 2 % signifi-
cance level the assumption of isotropy should be rejected. This anisotropic
behaviour is in accordance with the earlier results obtained by by Mészaros
et al. (2000a, 2000b) and by Litvin et al. (2001).
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Chapter 8

Physical difference between
GRBs

8.1 Basic characteristics of GRBs

The simplest grouping of gamma-ray bursts (GRBs), which is still lacking a
clear physical interpretation, is given by their well-known bimodal duration
distribution. This divides bursts into long (7" 2 2 s) and short (1" < 2 s)
duration groups (Kouveliotou et al. , 1993), defined through some specific
duration definition such as Ty, T5q or similar. The bursts measured with the
BATSE instrument on the Compton Gamma-Ray Observatory are usually
characterized by 9 observational quantities, i.e. 2 durations, 4 fluences and 3
peak fluxes (Meegan et al., 1996; Paciesas et al. , 1999; Meegan et al., 2001).
In a previous paper (Bagoly et al. |, 1998) we used the principal components
analysis (PCA) technique to show that these 9 quantities can be reduced to
only two significant independent variables, or principal components (PCs).
These PCs can be interpreted as principal vectors, which are made up of some
subset of the original observational quantities. The most important PC is
made up essentially by the durations and the fluences, while the second,
weaker PC is largely made up of the peak fluxes. This simple observational
fact, that the dominant principal component consists mainly of the durations
and the fluences, may be of consequence for the physical modelling of the
burst mechanism. In this chapter we investigate in greater depth the nature
of this principal component decomposition, and, in particular, we analyze
quantitatively the relationship between the fluences and durations implied
by the first PC. In our previous PCA treatment of the BATSE Catalog
(Paciesas et al. , 1999) we used logarithmic variables, since these are useful
for dealing with the wide dynamic ranges involved. Since the logarithms
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of the durations and the fluences can be explained by only one quantity
(the first PC), one might suspect the existence of only one physical variable
responsible for both of these observed quantities. The PCA assumes a linear
relationship between the observed quantities and the PC variables. The fact
that the logarithmic durations and fluences can be adequately described by
only one PC implies a proportionality between them and, consequently, a
power law relation between the observed durations and fluences.

We analyze the distribution of the observed fluences and durations of
the long and the short bursts, and we present arguments indicating that the
intrinsic durations and fluences are well represented by log-normal distribu-
tions. The implied bivariate log-normal distribution represents an ellipsoid
in these two variables, whose major axis inclinations are statistically different
for the long and the short bursts. An analysis of the possible biases and com-
plications is made, leading to the conclusion that the relationship between
the durations and fluences appears to be intrinsic, and may thus be related to
the physical properties of the sources themselves. We calculate the exponent
in the power-laws for the two types of bursts, and find that for the short
bursts the total emitted energy is weakly coupled to the intrinsic duration,
while for the long ones the fluences are roughly proportional to the intrinsic
durations. The possible implications for GRB models are briefly discussed.

8.2 Analysis of the duration distribution

Our GRB sample is selected from the Current BATSE Gamma-Ray Burst
Catalog according to two criteria, namely, that they have both measured Tgg
durations and fluences (for the definition of these quantities see Meegan et
al. (2000a), henceforth referred to as the Catalog). The Catalog in its final
version lists 2041 bursts for which a value of Ty, is given. The fluences are
given in four different energy channels, Fi, Fs5, F3, F), whose energy bands
correspond to [25,50] keV, [50,100] keV', [100,300] keV and > 300 keV .
The "total” fluence is defined as Fi,; = I + F5 + F3 + F;. We restrict our
sample to include only those GRBs, which have F; > 0 values in the first
three channels; i.e. I, Fy, F3 are given.

Concerning the fourth channel, whose energy band is > 300 keV/, if we
had required Fy > 0 as well, this would have reduced the number of eligible
GRBs by ~ 20%. Hence, we decided to accept also these bursts with Fy = 0,
rather than deleting them from the sample. (With this choice we also keep in
the sample the no-high-energy (NHE) subgroup defined by Pendleton et al.
(1997).) Our choice of F' = Fi,, instead of some other quantity as the main
variable, is motivated by two arguments. First, as discussed in Bagoly et al.
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(1998), Fin is the main constituent of one of the two PCs which represent
the data embodied in the BATSE Catalog, and hence it can be considered
as a primary quantity, rather than some other combination or subset of its
constituents. Second, Petrosian and collaborators in a series of articles (Efron
& Petrosian , 1992; Petrosian & Lee , 1996; Lee & Petrosian, 1996, 1997) have
also argued for the use of the fluence as the primary quantity instead of, e.g.,
the peak flux. Using such defined Fj,, from the sample only such GRBs
are deleted, which have no measured Fj,. Because also the peak fluxes are
needed, too, we are left with N = 1929 GRBs, all of which have defined
Tyo and Fj,, as well as peak fluxes Pys6 on the 256 ms trigger scale. If the
peak flux P4 on the 64 ms trigger scales is needed, then the sample contains
N = 1972 GRBs. These are the samples studied in this chapter.

The distribution of the logarithm of the observed Ty, displays two promi-
nent peaks', which is interpreted as reflecting the existence of two groups of
GRBs (Kouveliotou et al. , 1993; Norris et al. , 2000). This bimodal distri-
bution can be well fitted by the sum of two Gaussian distributions (Horvath,
1998) indicating that both the long and the short bursts are individually
well fitted by pure Gaussian distributions in the logarithmic durations. The
fact that the distribution of the BATSE Ty, quantities within a group is log-
normal is of interest, since we can show that this property may be extended
to the intrinsic durations as well. Let us denote the observed duration of
a GRB with Tyy (which may be subject to cosmological time dilatation),
and denote with tgy the duration which would be measured by a comoving
observer, i.e. the intrinsic duration. One has

Too = toof(2), (8.1)

where z is the redshift, and f(z) measures the time dilatation. For the
concrete form of f(z) one can take f(z) = (1 + 2)*, where k = 1 or k =
0.6, depending on whether energy stretching is included or not (Fenimore &
Bloom , 1995; Mészéaros & Mészéaros , 1996). If energy stretching is included,
for different photon frequencies v the tgy depends on these frequencies as
too(v) = too (Vo) (v/1e) 0% ox 704 where v, is an arbitrary frequency in the
measured range (i.e. for higher frequencies the intrinsic duration is shorter).
The observed duration at v is simply (142) times the intrinsic duration at v x
(142). Thus, Teo(v) = teo(v(1+2))(1+2) = too(ve) (V(1+2) /1) "4 (1+2) =
too(v)(1+2)"6. Hence, when stretching is included, f(z) = (1+ 2)%6 is used.

TAs we claimed in the previous chapter there are also evidences for the existence of
a third intermediate subgroup (Horvath, 1998; Mukherjee et al., 1998; Hakkila et al. |,
2000a; Horvath , 2002), which shows a distinct sky angular distribution (Mészdros et al.
2000a,b). We do not deal with this third group here.
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Taking the logarithms of both sides of Eq. 8.1 one obtains the logarithmic
duration as a sum of two independent stochastic variables. According to a
mathematical theorem of Cramér (Cramér , 1937; Rényi , 1962), if a variable
¢ - which has a Gaussian distribution - is given by the sum of two independent
variables, e.g. ¢ = £ +n, then both £ and n have Gaussian distributions. (In
practical cases, however, this holds, of course, only if the variances of £ and
n are comparable. If the variance of, say, £ is much smaller than the variance
of n, then both the variables ¢ and n may have a normal distribution - but
nothing can be said about the distribution of £. It can, but also need not be
Gaussian.) Therefore, the Gaussian distribution of log Ty - confirmed for the
long and short groups separately (Horvath, 1998) - implies that the same type
of distribution exists for the variables logtgy and log f(z). However, unless
the space-time geometry has a very particular structure, the distribution of
log f(z) cannot be Gaussian. This means that the Gaussian nature of the
distribution of log Ty must be dominated by the distribution of log tey alone,
and therefore the latter must then necessarily have a Gaussian distribution.
In other words, the variance of f(z) must be much smaller than the variance
of logtgg. This must hold for both duration groups separately. This also
implies that the cosmological time dilatation should not affect significantly
the observed distribution of Ty, which therefore is not expected to differ
statistically from that of tg99. We note that several other authors (Wijers
& Paczyniski, 1994; Norris et al., 1994; Norris et al. |, 1995) have already
suggested that the distribution of Ty, reflects predominantly the distribution
of tgg. Nevertheless, our argumentation based on the mathematical Cramér
theorem is new.

One can check the above statement quantitatively by calculating the
standard deviation of f(z), using the available observed redshifts of GRB
optical afterglows. The number of the latter is, however, relatively mod-
est, and, in addition, so far they have been obtained only for long bursts.
There are currently upwards of 21 GRBs with well-known redshifts (Greiner,
2002). The calculated standard deviation is ojeg fz) = 0.17, if we assumed
log f(z) = log(1 + 2). Comparing the variance oj, ¢, with that of the
group of long burst durations which gives ojog7,, = 0.5, one infers that the
variance of log f(z), or of log(l + z), can explain maximally only about
(0.17/0.50)? ~ 12% of the total variance of the logarithmic durations. (If
f(z) = (1 + 2)%6, then the variance of log f(z) can only explain an even
smaller amount, because 0joq r(-) = 0.6 x 0.17.) This comparison supports
the conclusion obtained by applying Cramér’s theorem to the long duration
group. For the short duration group, since this does not so far have measured
redshifts, one can rely only on the theorem itself.
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8.2.1 Comparison of Ty, and 75, statistical properties

In order to check, whether there is some influence of the time dilatation on
the distribution of Ty, or Ty, we compare here the basic properties of these
two quantities in our sample for the long and the short bursts, separately.
We grouped the data, using the 256 ms peak flux values, into 0.2 bins in
log Ps56, and summarized in Tables 8.1 and 8.2 the mean values and the
corresponding standard deviations of the logarithmic durations of GRBs in
each peak flux bin. We stress that this does not include any equalization of
the noise level in the various bins, and is not intended as a test of the time
dilatation hypothesis, but rather as a test of whether dilatation would have
any effect on our results.

Inspecting the durations of long (Tyy > 2s) GRBs summarized in Table
8.1 one sees that, except from the brightest and faintest bins, there is no sig-
nificant difference in log Tyy. The decrease of the duration in the faintest bin
is probably due to the biasing of the determination, namely, the fainter parts
of the bursts cannot be discriminated against the background, and there-
fore the duration obtained is systematically shorter. There is a remarkable
homogeneity and no trend in the standard deviations of the log Ty,.

In the case of the long burst T5q durations, this quantity shows an in-
creasing trend towards the bursts of fainter peak flux. The shortening in the
faintest bin is probably also due to selection effects. Similarly to the log Ty
values, the same homogeneity can be observed in the standard deviations
also in case of log T5g. The standard deviations are almost the same in both
log Ty and log T50. One can test whether, within our analysis methodology
and with our sample, there is a significant difference among the binned Ty
values, and whether the slight trend in the Tk significantly differs from zero.
To evaluate the significance of these data we performed a one way analysis
of variance with the ANOVA program from a standard SPSS package. The
ANOVA compares the variances within sub-samples of the data (in our case
within bins), with the variances between the sub-samples (bins).

In the case of logTyy the probability that the difference is accidental is
66%. In the case of the T5y durations the same quantities (variances within
and between bins) gives a probability of 98.5% for being a real difference
between bins, or a probability of 1.5% that there is no difference between
the bins. This figure gives some significance for the reality of a trend in
the data; however, this value of 0.2 explains less than 1/6 of the variance of
Tso within one bin. We may conclude that even in this case the variance is
mainly intrinsic.

Inspecting the same data in the case of the short duration bursts (Table
8.2) we come to a similar conclusion, i.e. there is no sign of trends in the
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Table 8.1: GRBs of long duration (Tyy > 2s).

log Pysg | logTyo logTs0  Ologmyy  Ologts, | NO. of GRBs
-.50 1.24 .85 A48 A7 49
-.30 1.42 1.00 A7 .50 230
-.10 1.48 1.08 .49 .53 309
10 1.46 1.02 .5l b7 272
.30 1.51 1.01 .52 .61 194
.50 1.43 .94 b1 .59 161
.70 1.45 .96 A48 .56 104
.90 1.42 .83 .54 .62 56
1.10 1.41 .83 .50 49 44
1.30 1.44 .88 .50 b3 34
>1.40 1.21 .68 41 .50 29

durations of the different bins. Dropping the two faintest bins, which are
definitely affected by biases, and dropping the poorly populated brightest
bins, we arrive by the analysis of variances with ANOVA to probabilities of
53 % and 92.1 % for the difference being purely accidental between bins in
Too and T¥g, respectively.

8.3 Analysis of the fluence distribution

The observed total fluence Fj,; can be expressed as

(]_ + Z)Etot

Ftot = 47Td12(z) = C(Z)Etot. (82)

Here E,, is the total emitted energy of the GRB at the source in ergs,
the total fluence has dimension of erg/ecm?, and d;(z) is the luminosity dis-
tance corresponding to z for which analytical expressions exist in any given
Friedmann model (Weinberg , 1972; Peebles , 1993). (We note that the con-
siderations in this chapter are valid for any Friedmann model. Note also
that the usual relation between the luminosity and flux is given by a sim-
ilar equation without the extra (1 + z) term in the numerator. Here this
extra term is needed because both the left-hand-side is integrated over the
observer-frame time and the right-hand-side is integrated over the time at
the source (Mészaros & Mészaros , 1995).)

Assuming as the null hypothesis that the log F},; of the short bursts has a
Gaussian distribution, for the sample of 447 bursts with Ty < 25, a x? test
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Table 8.2: GRBs of short duration (Tyy < 2s).

log Posg | logTyo logTs0  Ologmyy  Ologty, | NO. of GRBs
-.50 -.57 -.87 .55 .60 7
-.30 -.65  -1.01 b3 b7 43
-.10 -.40 =77 .49 bl 103
10 -.35 -.74 .35 .32 105
.30 -.33 -.75 .39 41 75
.50 -.27 -.69 .35 .36 54
.70 -.29 -.72 .36 .34 25
.90 -.35 -.76 .39 .36 22
1.10 -.18 -.72 44 .39 7
1.30 74 -1.21 31 43 5
>1.40 =72 -.90 .00 .00 1

with 26 degrees of freedom gives an excellent fit with y? = 20.17. Accepting
the hypothesis of a Gaussian distribution within this group, one can apply
again Cramer’s theorem similarly to what was done for the logarithm of
durations. This leads to the conclusion that either both the distribution
of logc(z) and the distribution of log Ej,; are Gaussian ones, or else the
variance of one of these quantities is negligible compared to the other, which
then must be mainly responsible for the Gaussian behavior. Because log ¢(z)
hardly can have a log-normal distribution, the second possibility seems to be
the situation. In any case, one may conclude that the intrinsic fluence (i.e.
the total emitted energy) should be distributed log-normally.

In the case of the long bursts, a fit to a Gaussian distribution of logarith-
mic fluences does not give a significance level, which is as convincing as for
the short duration group. For the 1482 GRBs with Tyy > 25 a x? test on
log Fy; with 22 degrees of freedom gives a fit with x? = 35.12. Therefore,
in this case the x? test casts some doubt on normality but only with a rel-
atively high error probability of 3.5% for rejecting a Gaussian distribution
(Trumpler & Weaver, 1953; Kendall & Stuart, 1973; Press et al. , 1992).
This circumstance prevent us from applying Cramér’s theorem directly in
the same way as we did with the short duration group. Calculating the vari-
ance of log¢(z) for the GRBs with known 21 redshifts (Greiner, 2002) one
obtains ojog.(-) = 0.43. For the GRBs of long duration, however, one obtains
Olog Froy = 0.66. The ratio of these variances equals (0.43/0.66)% ~ 42%, i.e.
more than half of the variance of Fj,; is not explained by the variance of ¢(z).
(If one takes into account the energy stretching even a larger fraction remains
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unexplained). In other words, a significant fraction of the total variance of
F,o; has to be intrinsic. It is worth mentioning that the unexplained part of
the variance of F, corresponds nicely to the value obtained in Section 8.4
making use the EM algorythm.

Despite these difficulties, there is a substantial reason to argue that the
intrinsic distribution of total emitted energies is distributed log-normally for
the long subgroup, too. There are also other authors arriving to the same
conclusion (McBreen et al., 2002, Quilligan et al, 2002). This point of view
may be supported by the following argument.

The Gaussian behaviour of logc¢(z) can almost certainly be excluded.
One can do this on the basis of the current observed distribution of redshifts
(Greiner, 2002), or on the basis of fits of the number vs. peak flux distri-
butions (Fenimore & Bloom , 1995; Ulmer & Wijers , 1995; Horvath et al.,
1996; Reichart & Mészéros , 1997). In such fits, using a number density
n(z) o< (14 2)? with D ~ (3 — 5), one finds no evidence for the stopping
of this increase with increasing z (up to z ~ (5 — 20)). Hence, it would
be contrived to deduce from this result that the distribution of log¢(z) is
normal. In order to do this, one would need several ad hoc assumptions.
First, the increasing of number density would need to stop around some un-
known high z. This was studied (Mészaros & Mészaros , 1995; Horvath et
al., 1996; Mészaros & Mészaros , 1996), and no such effect was found. (For
the sake of preciseness it must be added here that these fits were done for the
whole sample of GRBs. But, because GRBs are dominated by the long ones,
conclusions from these fits should hold for the long subgroup, too.) Second,
even if this were the case, above this z the decrease of n(z) should mimic
the behavior of a log-normal distribution for ¢(z), without any obvious justi-
fication. Third, below this z one must again have a log-normal behavior for
¢(z), in contradiction with the various number vs. peak flux fits. Fourth, this
behavior should occur for any subclass separately. Hence, the assumption of
log-normal distribution of ¢(z) appears highly improbable.

Having a highly improbable log-normal distribution of log¢(z), which
variance is surely not negligible, a 3.5% error probability (i.e the probabil-
ity that we reject the hypothesis of normality but it is still true) from the
goodness-of-fit is still remarkable. One may argue that, if the distribution
of the total emitted energy were not distributed log-normally, then the two
non-normal distributions together would give a fully wrong x? fit for log F}u;
under this condition even the 3.5% probability would not be reachable. Of
course, this argumentation is more or less heuristic, and - as the conclusion -
one cannot say that the log-normal distribution of E}; is confirmed similarly
unambiguously in both subgroups. In the case of long subgroup questions
still remain, and they will still be discussed.
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In addition, even in the case of short GRBs the situation is not so clear
yet. The argument based on the Cramér theorem for the short GRBs should
also be taken with some caution. As shown in Bagoly et al. (1998), the
stochastic variable corresponding to the duration is independent from that
of the peak flux. This means that a fixed level of detection, given by the
peak fluxes, does not have significant influence on the shape of the detected
distribution of the durations (Efron & Petrosian , 1992; Wijers & Paczyniski,
1994; Norris et al., 1994; Norris et al. , 1995; Petrosian & Lee , 1996; Lee
& Petrosian, 1996, 1997). In the case of the fluences, however, a detection
threshold in the peak fluxes induces a bias on the true distribution, since
fluences and durations are stochastically not independent. Therefore, the log-
normal distribution recognized from the data does not necessarily imply the
same behaviour for the true distribution of fluences occurring at the detector.
In other words, observational biases may have important roles; in addition,
for both subgroups. A discussion of these problems can be found in a series of
papers published by Petrosian and collaborators (Efron & Petrosian , 1992;
Petrosian & Lee , 1996; Lee & Petrosian, 1996, 1997; Lloyd & Petrosian ,
1999). In what follows, we also will study the biases together with the fitting
procedures.

8.4 Correlation between the fluence and du-
ration

In the previous Sections we presented firm evidences that the observed distri-
bution of the durations is basically intrinsic. We argued furthermore that a
significant fraction of the variance of the fluences is also intrinsic. We proceed
a step further in this Section and try to demonstrate that there is a relation-
ship between the duration and the fluence which is also intrinsic. There are
two basic difficulties in searching the concrete form of this relationship (if
there is any at all): first, we observe only those bursts which fulfill some trig-
gering criteria and, second, the observed quantities are suffering from some
type of bias depending on the process of detection. Several papers discuss
these biases (Efron & Petrosian , 1992; Lamb et al. |, 1993; Lee & Petrosian,
1996; Petrosian & Lee , 1996; Lee & Petrosian, 1997; Stern et al. , 1999;
Paciesas et al. |, 1999; Hakkila et al. ; 2000b; Meegan et al, 2000b). In the
following we will address these issues in a new way.

The detection proceeds on three time scales: the input signal is analyzed
on 64, 256 and 1024 ms resolution. The counts in these bins of these scales
are compared with the corresponding 17 second long averaged value. There
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are eight detectors around the BATSE instrument. If at least one of the
three peak intensities in the second brightest detector exceeds 5.5 sigma of
the threshold computed from the averaged signal the burst will be detected.
In case of the bursts of long duration (at least several seconds) the differences
in the time scales of detection do not play an important role since the vast
majority of the events were triggered on the 1024 ms scale and the detection
proceeded if the peak exceeded the threshold on this time scale. In contrast,
at the bursts of short duration - when Ty, could be much shorter then the time
scale of the detection - the situation could be drastically changed. Looking
at the data of the BATSE the bursts of duration of Tyy < 2s are mixtures of
those triggered on different time scales.

Among bursts triggered on the same time scale the detection proceeds
when the corresponding peak flux exceeds the threshold. In the case of
bursts, which are shorter than their triggering time scale, the corresponding
peak fluxes are given by the fluence itself. This has the consequence that the
threshold in the peak flux means the same for the fluence, i.e. it results a
horizontal cut on the fluence - duration plane and a bias in the relationship
between these quantities. In order to minimize this effect we will use the
peak flux on the 64 ms time scale in our further analysis. The BATSE had
a spectral response on the detected ~ radiation. It had the consequence
that different measured values were assigned to bursts having the same total
energy at the entrance of the detector if the incoming photons had different
spectral distributions

The duration of a GRB is only a lower limit for its intrinsic value since a
certain fraction of the burst can be buried in the background noise. There-
fore any relationship recognized among the observed fluence and duration is
not necessarily representative for those between the corresponding intrinsic
quantities. In the next paragraphs we address these issues in more details.

8.4.1 Effect of the detection threshold on the joint
probability distribution of the fluence and du-
ration

In the following we will study the effect of the detection threshold on the
joint probability distribution of the observed fluence and duration. In order
to put this effect into a quantitative basis we use the law of full probabilities
(see e.g. Rényi (1962)). Let P(Fio, Too) be the joint probability density of
the fluence and duration. Using this theorem any of the probability densities
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on the right side can be written in the form of

P(Fior, Too) = | P(Fu, Tool)G(p)dp, (8:3)
0

where p is the peak flux at any of the 64 ms, 256 ms and 1024 ms time
scales, P(Fio, Too|p) is the joint (bivariate) probability density of the flu-
ence and duration (assuming that p is given), and G(p) is the probability
density of p. This means that, if there are N bursts in the sample, then
NP(Fyo1, Too)dlog Fippdlog Ty is the expected number of observed GRBs in
the infinitesimal intervals [log Fjy, (log Fioi+dlog Fyop)] and [log Too, (log Too+
dlog Tyy)], respectively. Among the bursts triggered on a given time scale
G(p) represents an unbiased function above py,, the peak flux corresponding
to the detection threshold. Below this limit, however, G(p) is biased by the
process of detection. It inserts also a bias on the joint probability density
of the observed fluence and duration. Nevertheless, the kernel P(Fu, Too|p)
represents some intrinsic relationship between these two quantities, and it is
free from the bias of G(p). Following our discussion given above, we use in
the following the peak fluxes of the 64 ms time scale.

8.4.2 Intrinsic relationship between the fluence and
the duration

We demonstrated in an earlier paper (Bagoly et al. 1998) that the logarithms
of the peak flux and the duration represent two independent stochastic vari-
ables and the logarithmic fluence can be well approximated as the linear
combination of these variables:

log Fior = aqlog Tyy + as logp + e, (8.4)

where ay, ay are constants, and € is a noise term (later on we will see that
a1 may depend on the duration, i.e. it is different for the bursts of short and
long duration). One may confirm this statement by inspecting the Tables
8.1, 8.2. They demonstrates convincingly that, independently of the choice
of the peak flux, the standard deviation and the mean value of the dura-
tion is not changed significantly. This expression reveals that - fixing the
peak intensity - the distribution of the fluences reflects basically the distri-
bution of the durations. Since the probability density of the durations is a
superposition of two Gaussian distributions, the same should hold also for
the fluences. Consequently, we may assume that the joint conditional prob-
ability distribution of the fluence and duration consists of a superposition of
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two two-dimensional Gaussian distributions. One such distribution takes the
form

flx,y) = Cr——
T—Qg 2 —a 2 T(T—ay —a
X eX [—2(122) (( o2) +(yggw — Ilemely )ﬂ (85)

where x = log Ty, y = log Fyot as, a, are the means, o,, o, are the disper-
sions, and r is the correlation coefficient (Trumpler & Weaver (1953); Chapt.
1.25). In our case one needs a weighted sum of two such bivariate distribu-
tions. This means that 11 free parameters should be determined (two times
5 parameters for the both distributions; the 11th independent parameter is
the weight of the, say, first subgroup). This also means that two r correlation
coefficients should be obtained, which may be different for the two subgroups.

The parameters a,, o,, characterizing the distribution of the duration do
not depend on the peak flux, because Ty, and p are independent stochastic
variables. In the case, when the r-correlation coefficient differs from zero,
the semi-major axis of the dispersion ellipse represents a linear relationship
between log Tyg and log Fj;, with a slope of m = tan o, where

2ro,
tan 2o = ;U 0y2 (8.6)
02— 0?2

This linear relationship between the logarithmic variables implies a power-law
relation of form F,,; = (Ty)™ between the fluence and the duration, where m
may be different for the two groups. Replacing the G(p) probability density
by the empirical distribution of the measured peak fluxes, one may write the
joint probability density of the fluence and duration in the form of

g

P(Ftot,Tgo) — fP<FtotaT90|p)G(p)dp

[e=]

N k
~ ; P(Fyor, Too|pi) =~ 121 biP(Eyor, Toolpr), (8.7)

i.e. the integral is approximated by a sum of k& separate terms (bins), in
which b; is the number of GRBs at the given bin.

The k is the number of bins at the right-hand-side, and is somewhat
arbitrary. Trivially, bigger k leads to a better approximation of the integral.
On the other hand, bigger k leads to the situation, when in one single bin
the number of GRBs 0; is smaller. Hence, k should be small in order to get
enough number of GRBs in each bin for making statistics, but not too small
in order to have good approximation of the integral.
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8.4.3 Maximum Likelihood estimation of the parame-
ters via EM algorithm

One finds in the Tables 8.1, 8.2 the computed mean values and standard
deviations of the logarithmic durations for the short and long bursts, respec-
tively. These Tables clearly suggest that, except for the faintest bins where
we expect serious biases in the duration and fluence due to the detection
close to the background, the standard deviations do not differ significantly
between the bins. Dividing the sample into short and long bursts by the cut
of Tyy < 2s and Tyg > 25, we may assume that these subsamples are domi-
nated by only one Gaussian distribution and we may compute its parameters
in a simple way as given below.

If the P(F,, Too|p) conditional probability density is a pure Gaussian
one, then the Maximum Likelihood estimation of its parameters would be
very simple, because they can be obtained by computing the mean values,
standard deviations and the correlation between the fluence and duration.
In the reality, however, this probability density is a superposition of two
Gaussians, and the simple cut at Tgg = 2s is hardly satisfactory. The proper
way to estimate the free parameters is not so simple. For this reason, simi-
larly to Sec. 7.3 we will use a procedure, called EM algorithm (Expectation
and Maximalization), which terminates at the Maximum Likelihood solution
(Dempster et al. 1977).

If we knew, which of the bursts belong to the short and long dura-
tion groups, we may add a {ij,i2} two dimensional indicator variable to
each GRB having the value of {1,0} in the case if a burst was short, and
similarly {0,1} if it was long. The sample means of Ty, weighted with i;
would give the ML estimation of a, of the first Gaussian distribution (i.e.
ay = Zﬁyzl i1525/ 27—y i15). The same hold for the other parameters. Weight-
ing with 75 would give the parameters of the second Gaussian distribution.
Hence 10 parameters of the two distributions would be well calculable. The
11th parameter would also be trivially calculable, because the fraction of first
subgroup should simply be >, 4, /N. Hence, if the values of the {i;,i,} in-
dicator variable were known, the ML parameters would be well calculable.

If the parameters of the two Gaussians were given, one could compute
the {p1,p2} membership probabilities of a burst to each of the two groups.
Replacing the indicator variable by these probabilities one may calculate new
parameters in the same way as was done assuming {i, 45} were given. Then
one may again calculate new {i,is}, and again the new parameters. This
iteration is exactly the procedure, what EM algorithm is doing. One gives an
initial estimate for the parameters of the two Gaussian distributions. Then
one estimates the membership probabilities (E step). Weighting with the
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Table 8.3: Number of GRBs within the 0.2 wide strata of the logarithmic 64
ms peak fluxes.

Serial No. log Ps4  total No. No. of GRBs No. of GRBs
of GRBs with Tyg < 2s  with Ty, < 0.064s
1. -0.6 --04 5 1 0
2. -0.4--0.2 113 5 0
3. -0.2-0.0 385 44 1
4. 0.0-0.2 434 104 4
5. 02-0.4 365 126 8
6. 0.4-0.6 254 79 3
7. 0.6 -0.8 166 47 2
8. 0.8-1.0 95 34 0
9. 1.0-1.2 74 22 0
10. 1.2-14 39 6 0
11. 14-1.6 19 5 0
12. 1.6-1.8 15 2 0
13. 1.8-2.0 6 1 0
14. 2.0 < 2 0 0

membership probabilities one obtains the new ML estimation of the param-
eters (M step). Repeating these steps successively one proceeds to the ML
solution of the parameter estimation (Dempster et al. 1977).

In order to fit the [log Ty, log Fi,.] data pairs with the superposition of
two two-dimensional Gaussian bivariate distributions we splitted the Catalog
into subsamples with respect to 64 ms peak fluxes. The strata were obtained
by taking 0.2 wide strips in the logarithmic peak fluxes. Table 8.3 summarizes
the number of GRBs within the strata. In addition, also the number of GRBs
with Tyy < 2s and with Ty, < 0.064s are given there. The first one shows
that, roughly, which fraction of GRBs belong to the short subgroup in the
given strata, and the second one shows which fraction is maximally biased.

In the fitting procedure we omitted bins No. 1.-3., being affected by
selection bias, and also No. 9.-14., being scarcely populated. We performed
the ML fitting in the bins No. 4.-8., making use the EM algorithm. Table
8.4 summarizes the results of the ML fitting for the short GRBs, and Table
8.5 for the long GRBs, respectively. On Figures 8.1-8.5 the results of fitting
for bins No. 4.-8. are shown. The ellipses define the 1-sigma and 2-sigma
regions, respectively.

The slopes of short GRBs obtained for the bins No.7. and No.8. differ
remarkably from those in bins No. 4.-6. They are based, however, on a small
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Table 8.4: Results of the ML fitting for the short GRBs using the EM
algorithm. Weighted mean for m is m = 0.81 £ 0.06.

Strip | freq.  ay ay oy Oy r | No. GRBs | m = tana
4. | .293 -199 -6.587 .549 .502 .593 434 0.86
5. | 418 -275 -6.488 .575 .503 .591 365 0.80
6. 321 -365 -6.244 486 497 515 254 1.04
7.1 .332 -188 -5.921 510 420 .342 166 0.58
8. | .358 -.325 -5.910 .440 .347 .279 95 0.46
-4
-4.5

log Fyo
()]

-2 -15 -1 -0.5 0 0.5 1 1.5 2 2.5 3
log Tgq

Figure 8.1: The best ML fits of the two log-Gaussian distributions for the
faintest sample No.4 with N = 434.
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Figure 8.2: The best ML fits of the two log-Gaussian distributions for the
sample No.5 with N = 365.

number of bursts; hence, the r parameter is highly uncertain. Since we used
for weighting the number of GRBs within the given bin their, contribution
to the final result is marginal. We noted above that the duration and peak
flux are independent stochastic variables. Since the sample was splitted into
subsamples by the peak flux, this means that the parameters of Gaussian
distributions referring to Ty, either in the Table 8.4 or in Table 8.5 should
be identical within the statistical uncertainty of estimation.

Inspecting a, in these Tables - which summarize the results of the EM
algorithm - clearly demonstrates that their difference is much less than o,. It
is also possible to compare the mean slopes obtained by weighting the results
for the short and long GRBs, respectively, in order to test the significance
of the difference between these groups. One may compute a x* = (m; —
m)?/o? + (my — m)? /o3 variable based on the assumption that the my, mo
slopes of the short and long GRBs differs from the m weighted mean only
by chance. Making this assumption one obtains y? = 22.2 indicating that
the null hypothesis, i.e. m; = mo, should be rejected on a 4.7¢ significance
level. The two slopes are different.
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Figure 8.3: The best ML fits of the two log-Gaussian distributions for the
sample No.6 with N = 254.

Table 8.5: Results of the ML fitting for the long GRBs using the EM
algorithm. Weighted mean for m is m = 1.11 £ 0.03.

Strip | freq.  a, @y o oy r | No. GRBs | m = tana
4. 707 1.560 -5.485 .400 .434 .586 434 1.15
5. 582 1.613 -5.239 445 463 .599 365 1.07
6. 679 1419 -5.216 .538 .613 .753 254 1.19
7. 668 1468 -4.894 448 459 .610 166 1.04
8. 642 1.391 -4.779 541 531 .656 95 0.97
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Figure 8.4: The best ML fits of the two log-Gaussian distributions for the
sample No.7 with N = 166.

8.4.4 Possible sources of the biases

The relationships derived in the previous Subsection refer to the observed
values of GRBs. There is a dilemma, however, how representative they are
for the true quantities of GRBs not affected by the process of detection. We
mentioned already several major source of bias. Here we summarize them
again:

Some GRBs below the threshold remain undetected. Therefore, the
stochastic properties of the observed part of the true joint distribution
of {log Tyo, log Fi1} are not necessarily relevant for the whole popula-
tion.

Observed duration refers to the detected part of GRBs. The real du-
ration might be much longer.

There is a similar bias also for the fluence.

Additionally, due to the limited spectral response of BATSE, a sig-
nificant fraction of the high energy part of the fluence may remain
unobserved.
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Figure 8.5: The best ML fits of the two log-Gaussian distributions for the
brightest sample No.8 with N = 95.

- There is a special bias at short GRBs. At GRB, where the duration
is shorter than the time resolution of detection, there is a one-to-one
correspondence between the peak flux and the fluence.

Effect of the threshold

Using the law of full probability we decomposed the observed joint probabil-
ity distribution of {log Tyo, log Fi} into the distribution of the peak flux and
a conditional probability, assuming p is given. Since the detection proceeds
on three different time scales, one does not expect a sharp cut on G(p) but
the distortion is more complicated in the reality. Although the observational
threshold may seriously affect the detected form of G(p), it need not neces-
sarily modify P(Fi., Too|p). The detection threshold, however, may distort
also the fluence and duration themselves, and in this way also the form of

P(Ftot7 Tyo ]p)

True vs. observed duration

Depending on the light curve of the GRBs a significant fraction of the out-
bursts may remain unobserved. So the duration derived from the observed
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part is only a lower limit for the true one. Approaching the detection thresh-
old this effect should become more and more serious. Assuming a Gaussian
form for P(Fju, Too|p) one expect a systematic change in the parameters as
one is approaching the threshold. Inspecting the mean values and standard
deviations of the duration in the Tables 8.1, 8.2, one may really recognize
this effect in the three faintest bins. In the remaining part of the sample,
however, there is a remarkable homogeneity in the mean value and standard
deviation of duration. It is also worth mentioning that the same is true in
Table 8.4 and 8.5 summarizing the result of the ML fitting. So one may
conclude that this bias does not play a significant influence in the 4.-8. bins
used for our calculations.

True vs. observed fluence

Similarly to the duration also the observed fluence might be a lower bound
depending on the light curve of the burst. Although fixing p resulted in a
similar functional (Gaussian) form of the fluence as of the duration, its mean
value a, differs from bin to bin due to the dependence of F;,; on the peak flux.
Its standard deviation o,, however, shows a noticeable homogeneity within
the limits of statistical uncertainty. Again, this implies a constancy in the
functional form of P(Fi.t, Too|p) in the bins studied. The only exception is
perhaps the bin No. 8 for the short GRBs, where the standard deviation and
the r correlations coefficient seems to depart considerably from the others in
Table 8.4 One may test the significance of the excursion of o, in bin No. 8
by performing a F' test (see e.g. Kendall & Stuart (1973)). Computing the
F = 0/0? value, where the indexes refer to the serial number of bins, one
obtains F' = 2.11 indicating significant difference on the 99.9 % level. Except
for this significant excursion in the 8th bin, the o, values are statistically
identical implying that the functional relationship between Fj,; and Ty is
not significantly influenced by the process of detection in the bins studied.

Bias from the spectral response

BATSE were observing in four energy channels. Even the highest energy
channel was not able to detect the hardest parts of the bursts. A significant
fraction of the incoming energy might remain unobserved. In principle, there
is a possibility for estimating the amount of unobserved part of radiation
by supposing a spectral model for the GRB. Fitting this model to the val-
ues measured in the four energy channels one may get an estimate for the
unobserved part. Supposing, the energy distribution of the bursts can be
described by two power laws separated by an £, energy Lloyd & Petrosian
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(1999) did a four parameter fit (two powers, E, and an amplitude) for GRBs
detected by BATSE. A basic trouble at this approach appears in the fact
that numbers of points and parameters to be fitted are identical and, conse-
quently, any uncertainty in the measured values has a very sensitive impact
on the parameters estimated. Moreover, a significant fraction of GRBs does
not have a reliable fluence in the high energy channel which exceeds at least
the 30 level of the background. In particular, it is true for the No. 4.-8.
bins.

It is well-known that the short bursts are harder in the average than the
long ones. Consequently, the fraction of the unobserved part of the energy
spectrum may have a negative correlation with the duration in the case of this
subgroup. The detected part of the fluence experiences therefore a positive
correlation, assuming there is no intrinsic relationship between the duration
and the true total fluence. In the case of a real intrinsic relationship between
these quantities, the apparent correlation from the spectral bias may have
a contribution to the real one. One may expect that the spectral bias is
more serious at bursts, where the whole high energy fluence is buried into
the background noise. So one expect a gradual change in the slope of the
relationship between Fj., and Tyy as one proceeds from the faint bursts to
the brighter ones. Table 8.6 and Table 8.7 summarize the frequency of bursts
having different S/N (”signal-to-noise”) ratios within the studied peak flux
bins, separately.

It is clear from Table 8.7 that the long faint bins are dominated by bursts
with no significant high energy fluence. The contrary is true for the brighter
ones. Proceeding from the faint burst to the bright ones one does not see
a gradual change in the slope of the {log Fy,,log Ty} relationship. Hence,
we may conclude that the spectral bias makes only a marginal contribution,
and the correlation observed is close to the real one. For the short bursts
(Table 8.6), in the contrary, a significant change is observed, which might be
interpreted as a clear sign of spectral bias. It implies, furthermore, that the
real slope, if any, is smaller than the observed one. This fact strengthens the
conclusion on the difference between the short and long GRBs with respect
of the {log Fo, log Ty} relationship. .

Bias from the finite time resolution

We mentioned above the detection proceeded on three (64 ms, 256 ms and
1024 ms) time scales. The incoming photons were binned in these time
scales and the bin having the maximum count rate were used for triggering
the detection. The bursts having Tyg < 64 ms, however, consist of only
one bin, consequently, the fluence and the peak flux are based on the same
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Table 8.6: Frequency of S/N ratios of fluences in the high energy channel
for GRBs of Ty < 2s (the integer numbers given in the header are the
truncated S/N values).

Bin S/N Row
.00 1.00 2.00 > 3.00 Total

1. 0 1 0 0 1
2. 3 0 1 1 D
3. 19 10 7 8 44
4. o7 15 14 18 104
D. 53 28 14 31 126
6. 17 16 17 29 79
7. 4 3 4 36 47
8. 2 4 4 24 34
9. 0 0 3 19 22
10. 1 0 1 4 6
11. 0 0 0 ) >
12. 0 0 0 2 2
13. 0 0 0 1 1
Column | 156 7 65 178 476
Total | 32.8 16.2 13.7 37.4 | 100.0%




8.4. CORRELATION BETWEEN THE FLUENCE AND DURATION131

Table 8.7: Frequency of S/N ratios of fluences in the high energy channel for
GRBs of Tyy > 2s (the integer numbers given in the header have the same
meaning as in Table 8.6)

Bin S/N Row
.00 1.00 2.00 > 3.00 Total

1. 2 1 0 1 4

2. 71 19 7 11 108
3. 193 58 37 53 341
4. 135 65 42 88 330
D. 72 33 40 94 239
6. 33 23 16 103 175
7. 12 9 10 88 119
8. 1 2 7 o1 61
9. 1 1 1 49 52
10. 0 0 0 33 33
11. 0 0 0 14 14
12. 0 0 0 13 13
13. 0 0 0 5 5
14. 0 0 0 2 2
Column | 520 211 160 605 1496
Total | 34.8 14.1 10.7 40.4 | 100.0 %
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incoming photons on this time scale. If the incoming photons of a burst had
the same energy fixing p would mean fixing F},; as well and equation 4 is no
longer valid since Tyy does not have any impact on the fluence observed. By
fixing p this effect degenerate the distribution of Fj, into one point and it
does no longer reflects the distribution of Ty, we supposed. In the reality,
however, the energies of the incoming photons have a wide range and this
effect is not so pronounced.

As the duration covers an increasing number of bins of 64 ms the particu-
lar bin representing the peak flux has a decreasing impact on the value of the
fluence. In Table 8.8 we gave some stochastic parameters (mean, standard
deviation, correlation) of the joint distribution of log Fi,; and log pgy within
the first 10 bins of Ty of 64 ms, in order to see the possible quantitative
differences. Except the mean value of log F},; in the first bin, which deviate
from the sample value at about 1o level there is no striking differences be-
tween the parameters. For testing the possible differences between the bins
in Table 8.8 we did a multivariate analysis of variance (MANOVA) which
compares the variances and covariances of variables within the bins and be-
tween them. The analysis resulted in a difference on the 99.5 % significance
level. The MANOVA module of the SPSS software package was used for
these calculations 2. Repeating the calculation but abandoning the first bin,
the suspected outlier, the significance dropped back to 50.4 % inferring that
the distributions in bins 2.-10. were identical within the limits of statistical
uncertainty. Even if we treated the excursion of the bin No. 1 as a real effect
there is only a small number of GRBs in it (see Table 8.3) which do not affect
the final results in Table 8.4 and 8.5.

Summing up the discussions we performed in this subsection on the dif-
ferent bias we may conclude that either they do not have a significant impact
on the final result (i.e. there is a significant difference in the {log F}., log Ty }
correlation between the short and long GRBs) or the observed difference in
the relationship is even enhanced in the reality if we considered the bias

properly.

8.5 Discussion

We have presented evidence indicating that there is a power-law relation-
ship between the logarithmic fluences and the logarithmic Tyy durations of
the GRBs in the Current BATSE Catalog, based on the EM maximum like-
lihood estimation of the parameters of the bivariate distribution of these
measured quantities. This relationship holds for both subclasses of GRBs

2SPSS is a registered trademark. See SPSS home page () in references
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Table 8.8: Mean values and standard deviations of the total fluences and
the 64 ms peak fluxes within the first ten 64 ms bin of the Ty, duration.
Except the fluence in the first bin all the values do not differ from those of
the entire sample, within the limits of statistical uncertainties.

log Fiot log pe4
Bin mean st. dev. | mean st. dev. | corr. coeff. | no. of GRBs
1. -7.0243  .5043 | .3535  .1912 7625 17
2. -6.6280  .5109 | .3815  .2447 .6333 33
3. -6.6756  .5122 | .3690  .2379 .6335 37
4. -6.4863  .5408 | .4090  .2629 5793 36
5. -6.5480  .4428 | .3691  .2460 7125 26
6. -6.5804  .5637 | .3482  .2370 6117 16
7. -6.4492  .3823 | 4191  .2278 2241 31
8. -6.3312 4756 | 4278  .2802 .6868 20
9. -6.4532 4517 | .3348  .2382 6780 16
10. -6.4292  .3826 | .3682  .2258 .5620 16
entire
sample | 6.5599 5015 | L3828 .2395 .5822 248

separately. As shown in Tab. 8.1 and 8.2, the dispersions of the Ty, do
not differ significantly from those of the Tyy distributions, and therefore the
same correlations and the same power-law relations would be expected if one
used the Tyo instead of the Tyy. We have also evaluated the possible impact
of instrumental biases, with the results that the conclusions do not change
significantly when these effects are taken into account.

An intriguing corollary of these results is that the exponents in the power-
law dependence between the fluence and the duration differs significantly for
the two groups of short (Tyy < 2 s) and long (Tyy > 2 s) bursts at a 4.70 level.
As shown in Sec. 8.4.4, this also means that the same power law relations
hold between the total energy emitted (E},) and the intrinsic durations (tgg)
of the two groups.

While an understanding of such power-law relations in terms of physical
models of GRB would require more elaborate considerations, we note that
there is substantial evidence indicating the two classes of bursts are physically
different. First, there is the fact that short burst are harder (Kouveliotou et
al., 1993); this is confirmed also by the analysis of Mukerjee et al. (1998).
Then, there is evidence that the spectral break energies of short bursts are
larger than for long bursts (Paciesas et al., 2001). The short bursts have a
different spectral lag vs. luminosity ratios than log bursts (Norris, Scargle
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& Bonnell, 2001). Finally, the number of sub-pulses, and the soft-to-hard
evolution is different depending on the duration (Gupta et al. , 2002).

The results obtained here are compatible with a simple interpretation
where the bursts involve a wind outflow leading to internal shocks responsible
for the gamma-rays (Rees & Mészaros , 1994; Piran , 1999), in which the
luminosity is approximately constant over the duration t of the outflow, so
that both the total energy F,, and the fluence Fj, are o t. If an external
shock were involved, e.g. Mészéros & Rees (1993); Piran (1999), for a
sufficiently short intrinsic duration (impulsive approximation) there would
be a simple relationship between the observed duration and the total energy,
t o< E'Y/3, resulting from the self-similar behavior of the explosion and the
time delay of the pulse arrival from over the width of the blast wave from
across the light cone. This relationship is steeper than the one we deduced
for long bursts.

The fluence — duration relation of GRBs which we have discussed here
appears to be physical, and it is significantly different for the short and the
long bursts. For the short ones, the total energy released is proportional to
the m = 0.81 power of duration of the gamma ray emission, while for the
long ones it is proportional roughly to the of m = 1.11 power of the duration.
This may indicate that two different types of central engines are at work, or
perhaps two different types of progenitor systems are involved. It is often
argued that those bursts for which X-ray, optical and radio afterglows have
been found, all of which belong to the long-duration group, may be due to
the collapse of a massive stellar progenitor (Paczynski , 1998; Fryer et al.,
1999). The short bursts, none of which have as of August 2002 yielded af-
terglows, may be hypothetically associated with neutron star mergers (Fryer
et al., 1999) or perhaps other systems. While the nature of the progenitors
remains so far indeterminate, our results provide new evidence suggesting
an intrinsic difference between the long and short bursts, which probably re-
flects a difference in the physical character of the energy release process. This
result is completely model-independent, and if confirmed, it would provide a
potentially useful constraint on the types of models used to describe the two
groups of bursts.
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Summary

1. Mathematical introduction

Nature of astronomical information Observing and storing the pho-
tons of the incoming radiation from the Cosmos typically gives a data cube
defined by (a,d,A). It is easy to translate this data structure into the for-
malism of multivariate statistics. A common problem in the multivariate
statistics whether the stochastic variables described by observed properties
are statistically independent or can be described by a less number of hidden
variables. This is the task of factor analysis. Forming groups from cases
having similar properties according to the measures of similarities or the dis-
tances is the task of cluster analysis. 1 demonstrated in several particular
cases how these technics can be used for studying structures in the («,d, A)
data cube and how to translate the statistical results into true physical quan-
tities.

The basic equation of stellar statistics The basic equation of stellar
statistics connects the probability density function of a measurable quantity
with the probability density of two variables, which can not be observed di-
rectly, by the law of full probabilities. The resulting relation is a Fredholm
type integral equation of the first kind. If the two background variables
are statistically independent we recover the convolution equation. The ana-
lytical solution based on the Fourier transformation is very sensitive to high
frequency noise. Eddington’s solution attempts to find the unknown function
in form of a series Y v; h() (z). Malmquist’s method computes the conditional
probability of the unknown variable assuming that the observed variable is
given. The statistical aspect of the problem is expressed if one uses the
Lucy’s algorithm which is a particular form of the more general EM algo-
rithm. Dolan’s matrix method solves numerically the matrix equation which
approximates the integral equation. Methods are superior which retain the
true statistical nature of the problem.
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2. Statistical study of extended sources

Separation of Components

Separation of the Zodiacal and Galactic Light.

Principal components analysis and k-means clustering was utilized to
identify different components of cosmic dust. Applying these tech-
niques on the PL51 TRAS maps I recognized two main components
with temperatures of about 200 K (Zodiacal Light) and 40 K (Galactic
dust).

Structure and Dynamics of the Cepheus Bubble.

The Cepheus Bubble is a giant ( 10° in angular diameter) dust ring
around the Cep OB2 association. Performing factor analysis on HI
21 c¢m data, taken from the Leiden/Dwingeloo survey, reveal HI struc-
tures in the [-14,4+2] kms~! velocity range which can be associated
with prominent parts of the dust ring. In the same area the HI maps
also show an expanding shell with a well-defined approaching side at
VLSR=-37 kms~! and a less well-defined receding side at VLSR=-4
kms—'. The kinematics and size of this shell are best modelled by a
supernova explosion, occurring in Cep OB2a at about 1.7 Myrs ago.
Since the ages of several parts of the Cepheus Bubble are considerably
higher than the age of the expanding shell, the supernova probably
exploded in a pre-existing cavity, and its shock front might have inter-
acted with the already existing star forming regions Sh2-140, IC 1396,
and NGC 7129, leading to a new wave of star formation there.

Star count study of the extinction I studied the ISM distribution in
and around the star forming cloud L1251 with optical star counts. A careful
calculation with a maximum likelihood based statistical approach resulted in
B, V, R, I extinction distributions from the star count maps. A distance of
330 + 30pc was derived. The extinction maps revealed an elongated dense
cloud with a bow shock at its eastern side. I estimated a Mach number of
M = 2 for the bow shock. A variation of the apparent dust properties is
detected, i.e. the Ry = Ay /Ep_y total to selective extinction ratio varies
from 3 to 5.5, peaking at the densest part of L1251. The spatial structure of
the head of L1251 is well modelled with a Schuster-sphere (i.e. n=>5 polytropic
sphere). The observed radial distribution of mass fits the model with high
accuracy out to 2.5pc distance from the assumed center. Unexpectedly, the
distribution of N H3 1.3 cm line widths is also well matched by the Schuster
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solution even in the tail of the cloud. Since the elongated head-tail structure
of L1251 is far from the spherical symmetry the good fit of the linewidths
in the tail makes reasonable to assume that the present cloud structure has
been formed by isothermal contraction.

3. Statistics of point sources

Classification of stellar spectra I made medium resolution (100A4/mm)
spectroscopy of 35 stars, picked up as suspected Ha emission objects on
small scale spectra, in the IC1396 star-forming region. Statistical studies
based on factor analysis and k-means clustering yielded templates for fur-
ther classification. Using proper motion data published in the literature I
suggested that the vast majority of our objects belong to 1C1396. Plot-
ting the program stars, along with theoretical evolutionary tracks, onto the
{Log(L); Log(T.s¢} plane I concluded that they are pre-main sequence ob-
jects of 0.5My < M < 3M, masses and 10° < t < 107 years age.

Angular distribution of GRBs The isotropy of gamma-ray bursts col-
lected in current BATSE catalog was studied. I showed that the quadrupole
term being proportional to sin2b sinl/ was non-zero with a probability of
99.9%. The occurrence of this anisotropy term was then confirmed by the
binomial test even with the probability of 99.97%. Hence, the sky distri-
bution of all known gamma-ray bursts is anisotropic. I also argued that
this anisotropy cannot be caused exclusively by instrumental effects due to
the nonuniform sky exposure of BATSE instrument. Separating the GRBs
into short and long subclasses, I showed that the short ones are distributed
anisotropically, but the long ones seem to be distributed still isotropically.
The character of anisotropy suggests that the cosmological origin of short
GRBs further holds, and there is no evidence for their Galactic origin.

Classification of GRBs The gamma-ray bursts can be divided into three
subgroups (”short”, ”intermediate”, "long”) with respect to their durations.
This classification is somewhat unclear, since the subgroup of the intermedi-
ate durations has an admixture of both short and long bursts. A physically
more reasonable definition of the intermediate subgroup was presented using
also the hardnesses of the bursts. I showed that the existence of the three
subgroups is real, and it was shown that no further subgroups are needed.
According to the result the intermediate subgroup is the softest one. From
this new definition it follows that 11% of all bursts belong to this subgroup.
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The intermediate subgroup shows furthermore an anisotropic distribution on
the sky. A strong anticorrelation between the hardness and the duration was
found - contrary to the short and long subgroups - for this subclass. Despite
this difference it is not clear yet whether this subgroup represents a physically
different phenomenon.

Physical difference between GRBs I argued that the distributions of
both the intrinsic fluence and the intrinsic duration of the gamma -ray emis-
sion in gamma-ray bursts from the BATSE sample are well represented by
log-normal distributions, in which the intrinsic dispersion is much larger than
the cosmological time dilatation and redshift effects. I performed separate
bivariate log-normal distribution fits to the BATSE short and long burst
samples. The bivariate log-normal behavior results in an ellipsoidal distri-
bution, whose major axis determines an overall statistical relation between
the fluence and the duration. I showed that this fit provides evidence for
a power-law dependence between the fluence and the duration, with a sta-
tistically significant different index for the long and short groups. I discuss
possible biases, which might affect this result, and argue that the effect is
probably real. This may provide a potentially useful constraint for models
of long and short bursts.
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Theses

1. I performed principal components analysis in the IRAS field PL51 (o =
4h,6 = +30°). The analysis resulted in two significant components cor-
responding to the Zodiacal Light and Galactic radiation. I estimated two
characteristic temperatures of 200 K and 40 K, respectively.

2. I investigated the spatial and velocity distribution of atomic hydrogen
associated with the Cepheus Bubble, a giant dust ring around the older
part of the Cep OB2 association. Using HI 21 c¢m data, taken from the
Leiden/Dwingeloo survey, I have reached the following results:

2/1 Tidentified the main HI structures associated with the dust ring in the
velocity range [-14,+2] kms™!.

2/2 At least three quarters of the ring seemed to be located at 900 pc, and
I suggested the existence of a physically contiguous, almost complete
ring around the older subgroup of the Cep OB2 association.

2/3 The HI data revealed an expanding shell with a radial velocity dif-
ference of V ~ 33kms~! between the approaching and receding sides.
In order to compare its kinematics with the analytical theoretical re-
sults of expanding shells I introduced an ‘effective expansion velocity’
of ~ 10kms~! taking into account the 1:4 density ratio between the
approaching and receding sides. The size and kinematics of this shell
can best be modelled by a SN explosion occured at about 1.7 Myrs ago.

2/4 1 pointed out that the time scale of the SNR expansion was considerably
lower than the age of several parts of the Cepheus Bubble, suggesting
that the supernova was probably exploded in an already existing cavity.
The expanding shock front then interacted with the already existing
star forming regions Sh2-140, IC 1396, and NGC 7129 at the inner
edge of the Bubble, leading to a new wave of star formation.

3. I studied the B,V R, I star count maps of L1251 in order to derive the
spatial structure of the obscuring matter in the cloud. I assumed that the
pixel values in the star count maps form a one dimensional manifold in the
BV RI four dimensional parameter space and defined areas of similar extinc-
tion by means of multivariate & — means clustering. After defining areas
of equal extinction I derived the amount of obscuration using a maximum
likelihood procedure based on a Monte Carlo simulation of the Wainscoat
et al.  (1992) model. As a byproduct of the model fitting I obtained the
330 4 30 pc distance of the cloud.
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3/1

3/2

3/3

3/4

3/5

The extinction maps clearly showed the main body of the cloud and a
less dense region having a form of a bow shock of a blunt body. The
form of the bow shock allowed me to calculate the approximate Mach
number (M = 2) of the streaming around the head of L1251.

Comparing the obscuration of the dust in different colors I calculated
the dependence of the total to selective extinction (Ry value) on the
visual extinction. The total to selective extinction exceeded Ry = 5 in
the densest part of the cloud.

Using Equation (4.8) for converting the optical extinction distribution
into surface mass density I obtained the mass of 371 M, for the cloud,
in a reasonably good agreement with the 410 M, figure obtained by
Sato et al. (1994), based on C'80O measurements.

Assuming a spherical symmetry for the head of L1251 I computed the
radial distribution of the mass and compared it with a polytropic model
of n = 5 (Schuster sphere). Up to r = 2.5 pc from the center of the
mass the fit is excellent but beyond this distance the observed points
start to depart remarkably from the fit due to the drastic distortion of
the spherical symmetry by the tail of L1251.

In the head of L1251 the Schuster model fit matches well the mean
FW HM of the 1.3 cm N Hj line measured by Té6th & Walmsley (1996).
It gives an unexpectedly good fit in the tail region indicating that
isothermal contraction played a significant role in forming the density
enhancements.

4. T made a medium resolution (100A/mm) spectroscopy for 35 stars from
the list of Kun and Pésztor (1990). I developed a statistical method based
on factor analysis and k-means clustering to get templates for classifying the
spectra. The main points obtained in my study might be summarized as
follows:

4/1

4/2

The spectra of our program stars are dominated by neutral metallic
lines (Fel, Mgl, Nal). Comparing our templates, obtained by factor
analysis and k-means clustering, with those published in the library of
standard spectra (Jacoby and Hunter 1984) I obtained spectral types
of A2-M3 for our program stars.

Except Kun 193 the stars do not show conspicuous Hydrogen emission.
Since all of the objects studied was picked up by some suspect of Ha
emission on small scale spectra the weakness of this feature in my case
might be explained by the transient behavior of emissivity.
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4/4
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Using the proper motion data of Marschall and van Altena (1987) I
inferred that the vast majority of our stars belong to Tr37.

Comparing the loci of my program stars on the {Log(L); Log(T.ss)}
plane with the evolutionary tracks of Forrestini (1994) I concluded that
they are in the pre-main sequence evolutionary stage and have a mass
of 0.5M < M < 3M, and an age of 10° < t < 107 years.

5. Studying the angular distribution of GRBs on the celestial sphere 1 ob-
tained the following results:

5/1
5/2
5/3

5/4

The sky distribution of 2025 GRBs is anisotropic.
This anisotropy is not caused exclusively by instrumental effects.

Separating GRBs into the short and long subclasses it is shown that
the short ones are distributed anisotropically, but the long ones can
still be distributed isotropically.

I conjecture that the anisotropic distribution of short GRBs does not
query their cosmological origin.

6. Using bivariate duration-hardness fittings I obtained the following results:

6/1

6/2

6/3

6,/4

6/5

Increasing of k from 2 to 3 shows that the introduction of the third
subgroup is real. This means that three subgroups of GRBs should
exist. This confirms the earlier results of several authors.

Increasing of k from 3 to 4 shows that the introduction of the fourth
subgroup is not needed. This means that only three subgroups should
exist. This result is in accordance with Mukherjee et al. (1998).

From the fitting procedures it follows that the duration and the hard-
ness are good quantities for the classification of GRBs. Remarkably, the
intermediate subclass is in average even softer than the long subgroup.

I developed a method allowing to define for any GRB the probabilities
determining how is it belonging to a given subclass. 11% of GRBs in the
Current BATSE Catalog should belong to the intermediate subclass.

The anisotropy of the intermediate subclass is again detected on the
2 % significance level.
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7. I have presented quantitative arguments in supporting two new results:

7/1

7/2

There is a power law relation between the fluence and duration of
GRBs. For the short subgroup one obtains m =~ (0.46 — 1.04) with the
most probable value around m ~ 0.81. (In the reality, however, this
value could be much smaller due to a possible strong spectral bias).
For the long subgroup one obtains m ~ (0.97 — 1.19) with the most
probable value around m ~ 1.11. The difference is significant on the
4.70 level.

For the short ones, the total energy released is weakly depending on
the duration of the gamma ray emission, while for the long ones it
is proportional roughly to the duration. This may indicate that two
different types of central engines are at work, or perhaps two different
types of progenitor systems are involved. It is often argued that those
bursts for which X-ray, optical and radio afterglows have been found,
all of which belong to the long-duration group, may be due to the
collapse of a massive stellar progenitor (Paczyriski , 1998; Fryer et al.,
1999). The short bursts, none of which have as of yielded afterglows,
may be hypothetically associated with neutron star mergers (Fryer et
al., 1999) or perhaps other systems.

References to the Theses

1.

Balazs, L.G., Kun, M., & Téth, V., 1990, in "The Galactic and Extra-
galactic Background Radiation’, IAU Symposia No. 139, ed. S. Bowyer
and C. Leinert, Kluwer Academic Publishers, Dordrecht, Holland, 214

Balazs, L.G., & Téth, L.V., 1991, in the ’Physics and Composition
of Interstellar Matter’, ed. J. Krelowski and J. Papaj, Institute of
Astronomy Nicolaus Copernicus University, Torun , 135

. Abrahdm P., Kun M., Baldzs L.G., Holl A., & Front6 A., 1993, A&A,

268, 230

Abraham, P., Baldzs, L.G., & Kun, M., 2000, A&A, 354, 645
Baléazs, L. G. and Abrahém, P.: 1996, TAU Symposia, No.169, p.623
Balazs, L.G., & Kun, M., 1989, AN, 310, 385

Kun, M., Balazs, L.G., & Téth, 1., 1987, Ap&SS, 134, 211



145

3. Balazs, L.G., Eisloeffel, J., Holl, A., Kelemen, J., & Kun, M., 1992,
A&A, 255, 281

Balazs, L.G., Abrahdm P., Kun, M., Kelemen, J., & Téth, L.V., 2004,
A&A, in press

4. Balazs, L.G., Melikyan, N.D., Melnikov, S.Yu., Shevchenko, V.S., 1987,
IBVS No. 3099

Balazs, L.G., Garibjanjan, A.T., Mirzoyan, L.V., Hambarjan, V.V.,
Kun, M., Frontd, A., Kelemen, J., 1996, A&A, 311, 145

5. Balazs, L.G., Mészaros, A., & Horvath, 1., 1998, A&A, 39, 1

Balazs, L.G., Mészaros, A., Horvath, 1., & Vavrek, R., 1999, A&A
Suppl., 138, 417

6. Bagoly, Z., Mészaros, A., Horvath, 1., Balazs, L.G., & Mészaros, P.,
1998, ApJ, 498, 42

Balazs, L.G., Bagoly, Z., Horvath, 1., Mészaros, A., & Mészaros, P.,
2003, A&LA, 381, 417

Mészaros, A., Bagoly, Z., Horvath, 1., Balazs, L.G., & Vavrek, R.,
2000b, ApJ, 539, 98

7. Bagoly, Z., Mészaros, A., Horvath, 1., Balazs, L.G., & Mészaros, P.,
1998, ApJ, 498, 42

Balazs, L.G., Bagoly, Z., Horvath, 1., Mészaros, A., & Mészaros, P.,
2003, A&A, 381, 417

Acknowledgements

Without the collaboration of several friends and colleagues this work never
could come into existence. In the first line I am indebted to the late Laszlo
Detre who taught me to honor the observational facts in astronomy. I would
like to express my thanks to Béla Baldzs for introducing me into the statis-
tical astronomy. Particular thanks belong to Béla Szeidl due to his many
years support and encouragement in my work. My humble progress in the
field of mathematical statistics would not be possible without the numerous
discussions with Géabor Tusnady.

All the results presented in this dissertation were born in close collabo-
ration with a high number of colleagues. It is not possible to rank them by
significance, I list them therefore in alphabetic order: Péter Abrahém, Zsolt



146

Bagoly, Andras Front6, Andréas Holl, Istvan Horvath, Janos Kelemen, Maria
Kun, Margit Paparé, Laszlé Pasztor, Viktor Toth, Roland Vavrek and many
others from abroad. I apologize for not mentioning all of them by name.

I am indebted for several colleagues whom contribution did not appear
directly in the scientific results but without their work no results would be
possible. In the first line I would like to mention Géza Viraghalmy for his
tireless work to develop and maintain the instrumentations. I am grateful
to Pal Decsy, Ilona Gadl, Ilona Kalman, Zsuzsa Litvay for assisting me in
my work. The library plays a unique role in the scientific research. My
distinguished thanks is devoted therefore to Magda Vargha for her many
decades struggle for the up to day availability of all the relevant information
in astronomy. I am also indebted to Jozsef Marton for continuing this line. 1
apologize for not mentioning all of the past and recent workers of the institute
by name whom activity has been keeping the institute in working.

This work could never be completed without the warm atmosphere of
my family. My greatest thank is devoted to my wife, Marta, to my children
Borbéla and Gergely for their continuous encouragement and their believe in
completing this dissertation.

I dedicate this work to the memory of my parents.



Bibliography

Alves, J. ., Lada, C. J., & Lada, E. A., 2001, Nature, 409, 159

Abrahém, P., Kun, M., Balazs, L.G., Holl, A., & Fronto, A., 1993, A&A,
268, 230

Abrahém, P., Baldzs, L.C., & Kun, M., 2000, A&A, 354, 645
Baars, J.W.M., & Wendker, H.J., 1976, A&A, 49, 473.

Bagoly, Z., Mészaros, A., Horvath, 1., Baldzs, L.G., & Mészaros, P., 1998,
AplJ, 498, 42

Balazs, L.G., Bagoly, Z., Horvath, 1., Mészaros, A., & Mészaros, P., 2003,
A&A, 381, 417

Balazs, L.G., Eisloeffel, J., Holl, A., Kelemen, J., & Kun, M., 1992, A&A,
255, 281

Balazs, L.G., Garibjanjan, A.T., Mirzoyan, L.V., Hambarjan, V.V., Kun,
M., Fronto, A., Kelemen, J., 1996, A&A, 311, 145

Balazs, L.G., & Kun, M., 1989, AN, 310, 385

Balazs, L.G., Kun, M., & Té6th, V., 1990, in "The Galactic and Extragalactic
Background Radiation’, IAU Symposia No. 139, ed. S. Bowyer and C.
Leinert, Kluwer Academic Publishers, Dordrecht, Holland, 214

Balazs, L..G., Melikyan, N.D., Melnikov, S.Yu., Shevchenko, V.S., 1987, IBVS
No. 3099

Baléazs, L.G., Mészaros, A., & Horvath, 1., 1998, A&A, 39, 1

Balazs, L.G., Mészaros, A., Horvéath, 1., & Vavrek, R., 1999, A&A Suppl.,
138, 417

147



148 BIBLIOGRAPHY

Balazs, L.G., & To6th, L.V., 1991, in the 'Physics and Composition of In-
terstellar Matter’, ed. J. Krelowski and J. Papaj, Institute of Astronomy
Nicolaus Copernicus University, Torun , 135

Balastegui, A., Ruiz-Lapuente, & Canal, R., 2001, MNRAS, 328, 283
Belli, B.M., 1995, Ap&SS 231, 43

Belli, B.M., 1997, ApJ, 479, L31

Benson, P. J., & Myers, P. C., 1989, ApJS, 71, 89

Blitz, L., Fich M., & Stark A.A., 1982, ApJS 49, 183

Bok, B.J., 1937, "The Distribution of Stars in Space’, U. Chicago Press
Bonnor, W. B., 1956, MNRAS, 116, 351

Borgonovo, L., 2004, A&A, in press, astro-ph/0402107

Brand, PW.J.L., & Zealey, W.J., 1975, A&A 38, 363

Briggs, M.S., 1993, ApJ, 407, 126

Briggs, M.S., 1995, Ap&SS, 231, 3

Briggs, M.S., Paciesas, W.S., Pendleton, G.F., et al., 1996, ApJ, 459, 40
Brown, A.G.A., Hartmann, D., & Burton, W.B., 1995, A&A, 300, 903
Burton, W. B., & Hartmann, D., 1994, Ap&SS, 217, 189

Cambrésy, L., 1999, A&A, 345, 965

Canto, J., & Raga, A., 1998, MNRAS, 297, 383

Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M., 2002, ApJ, 572, 238
Cernicharo, J., Bachiller, R., & Duvert, G., 1985, A&A, 149, 273

Che, H., Yang, Y., Wu, M., & Li, T.P., 1997, ApJ 477, L69

Chevalier, R.A., 1974, ApJ 188, 501

Clayton, G.C., & Fitzpatrick, E.L., 1987, AJ, 92, 157.

Cline, D.B., Matthey, C., & Otwinowski, S., 1999, ApJ, 527, 827



BIBLIOGRAPHY 149

Coles, P., 1998, Nature 391, 120

Cramér, H., 1937, 'Random wvariables and probability distributions’, Cam-
bridge Tracts in Mathematics and Mathematical Physics, No.36 (Cam-
bridge University Press, Cambridge)

Crampton, D.; & Fisher, W.A., 1974, Publ. Dom. Astrophys. Obs., 14, 283
Cudaback, D. D., & Heiles, C., 1969, ApJ, 155, L.21

Dame, T.M., 1999, personal communication

Dame, T.M., Ungerechts H., Cohen R.S., et al., 1987, ApJ 322, 706

de Zeeuw, P.T., & Brand, J., 1985, In: ”Birth and Evolution of Massive Stars
and Stellar Groups”, Boland W., van Woerden H. (eds.) p. 95

de Zeeuw, P.T., Brown, A.G.A., de Bruijne, J.H.J., et al., 1999, AJ 117, 354

Dempster, A.P., Laird, N.M., and Rubin, D.B., 1977, J. Roy. Stat. Soc., B,
39, 1

Dezalay, J.P., Lestrade, J.P., Barat, C., et al., 1996, ApJ, 471, L27
Dickman, R. L., 1978, AJ, 83, 363

Dieter, N. H., 1973, ApJ, 183, 449

Dolan, J.F., 1972, Ap&SS, 17, 472

Dolan, J.F., 1974, A&A, 35, 105

Dolidze, M.V., 1975, Bull. Abast. Obs., 47, 3.

Dolidze, M.V., & Vyazovov, V.V.; 1959, Bull. Abast. Obs., 24, 3.
Dubout-Crillon, R., 1976, A&AS, 25, 25

Ebert, R., 1955, Zeitschrift Astrophysics, 37, 217

Eddington, A.S., 1913, MNRAS, 73, 359

Efron, B., & Petrosian, V. 1992, ApJ, 339, 345

Emden, V. R., 1907, 'Gaskugeln’ (Leipzig)

ESA 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200



150 BIBLIOGRAPHY

Fenimore, E.E., & Bloom, J.S., 1995, ApJ, 453, 16

Fich, M., Treffers, R.R., & Dahl, G.P., 1990, AJ 99, 622

Fishman, G.J., Meegan, C.A., Wilson, R.B., et al.; 1994, ApJS, 92, 229
Forestini, M., 1994, A&A, 285, 473

Fryer, C.L., Woosley, S.E., & Hartmann, D. H. 1999, ApJ, 526, 152

Garmany C.D., Olson G.L., Conti P.S., & van Steenberg M.E., 1981, ApJ
250, 660

Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C., 1993, ApJ,
406, 528

Greiner, J., 2002, http://www.aip.de/ jcg/grbgen.html

Grenier, [. A., Lebrun, F., Arnaud, M., Dame, T. M., & Thaddeus, P., 1989,
AplJ, 347, 231

Gupta, V., Das Gupta, P. & Bhat, P.N., 2002, astro-ph/0206402

Hakkila, J., Haglin, D.J., Roiger, R.J., Mallozzi, R.S., Pendleton, G.F., &
Meegan, C.A., 2000a, in ’Gamma-Ray Bursts’; 5th Huntsville Symp., eds.
R.M. Kippen, R.S. Mallozzi, G.J. Fishman, AIP, Melville, p.33

Hakkila, J., Meegan, C.A., Pendleton, G.N., Mallozzi, R.S., Haglin, D.J., &
Roiger, R.J., 2000b, in 'Gamma-Ray Bursts’; 5th Huntsville Symp., eds.
R.M. Kippen, R.S. Mallozzi, G.J. Fishman, AIP, Melville, p.48

Hakkila, J., Haglin, D.J., Pendleton, G.N., Mallozzi, R.S., Meegan, C.A.,
Roiger, R.J., 2000c, ApJ, 538, 165

Halasz, G., 1984, private communication

Hartmann, D., & Burton, W.B., 1997, Atlas of Galactic HI, Cambridge
Univ. Press

Hayes, W. D., & Probstein, R. F., 1959, "Hypersonic Flow Theory’ (Academic
Press, New York and London)

Herbig, G.H., & Bell, K.R., 1988, Lick. Obs. Bull., No. 1111
Hildebrand, R.H., 1983, QJRAS 24, 267
Horvath, 1., 1998, ApJ, 508, 757



BIBLIOGRAPHY 151

Horvath, 1., 2002, A&A, 392, 791

Horvath, 1., Mészaros, P., & Mészaros, A., 1996, ApJ 470, 56
Jacoby, G.H., & Hunter, D.A., 1984, AplJS, 56, 257.

Jarrett, T.H., Dickman, R.L., & Herbst, W., 1989, ApJ, 345, 881
Johnson, H.L., 1966, ARAA, 4, 193.

Kandori, R., Dobashi, K., Uehara, H., Sato, F., & Yanagisawa, K., 2003, AJ,
126, 1888

Katz, J.I., & Canel, L.M., 1996, ApJ 471, 915

Kendall, M.G., and Stuart, A., 1973, The AdvancedTheory of Statistics,
Charles Griffin & Co. Ltd., London &High Wycombe

Klebesadel, R.W., Strong, 1.B., & Olson, R.A., 1973, ApJ, 182, L85
Koshut, T.M., et al., 1996, ApJ, 463, 570

Kouveliotou, C., Meegan, C.A., Fishman, G.J., et al., 1993, ApJ, 413, L101
Kouveliotou, C., et al., 1993, ApJ, 413, L101

Kouveliotou, C., et al., 1993, ApJ, 413, L101

Kudritzki, R.P., 1998, In: Proc. 8th Canary Winter School, 1996, Aparicio
A., Herrero A., Sanchez F. (eds.) Cambridge Univ. Press.

Kun, M., 1982, Astrophysics, 18, 37

Kun, M., 1986, Ap&SS, 125, 13.

Kun, M., 1995, Ap&SS, 224, 73

Kun, M., 1998, ApJS, 115, 59

Kun, M., Baldzs, L.G., & Téth, 1., 1987, Ap&SS, 134, 211 (KBT)
Kun, M., & Pasztor, L., 1990, Ap&SS, 174, 13

Kun, M., & Prusti, T., 1993, A&A, 272, 235

Kun, M., Vinké, J., & Szabados, L., 2000, MNRAS, 319, 777
Kurth, R., 1952, Z. Astroph., 31, 115



152 BIBLIOGRAPHY

Lamb, D.Q., Graziani, C., & Smith, [.A., 1993, ApJ, 413, L11
Lauer, T.R., & Postman, M., 1994, ApJ, 425, 418

Lee, C. W., Myers, P. C.; & Tafalla, M., 1999, ApJ, 526, 788
Lee, C. W., Myers, P. C., & Tafalla, M., 2001, ApJS, 136, 703
Lee, Y., 1994, Journal of Korean Astronomical Society, 27, 159
Lee, T., & Petrosian, V., 1996, ApJ, 470, 479

Lee, T., & Petrosian, V., 1997, ApJ, 474, 37L

Leinert, C., Abraham, P., Acosta-Pulido, J., Lemke, D., & Siebenmorgen,
R., 2002, A&A, 393, 1073

Litvin, V.F., Matveev, S.A., Mamedov, S.V., & Orlov, V.V., 2001, Pis’'ma v
Astronomicheskiy Zhurnal, 27, 495

Lloyd, K.H., 1969, Am. J. Phys., 37, 329

Lloyd, N.L., & Petrosian, V., 1999, ApJ, 511, 550

Lucy, L.B., 1974, AJ, 79, 745

Malmquist, K.G., 1924, Medd. Lund Astron. Obs. Ser. II., No 32, 64
Malmquist, K.G., 1936, Stockholm Obs. Medd, No 26

Marschall, L.A., Comins, N.F., & Karshner, G.B., 1990, AJ, 99, 1536
Marschall, L.A., & Van Altena, W.F., 1987, AJ, 94, 1

Mathis, J. S., 1990, ARAA, 28, 37

Magzets, E.P., Golenetskii, S.V., [I'Inskii, V.N., Panov, V.N., Aptekar, R. L.,
Gur’yan, Y. A., et al., 1981, Ap&SS, 80, 3

McBreen, B., Hurley, K.J., Long, R., & Metcalfe, L., 1994, MNRAS, 271,
662

McKee, Ch.F., Van Buren,D., & Lazareff, B., 1984, ApJ, 278, L115

McLachlan, G.J., & Basford, K.E., 1988, 'Mixture models’, (New York: Mar-
cel Dekker)

Medvedev, M. V., & Rybicki, G., 2001, ApJ, 555, 863



BIBLIOGRAPHY 153

Meegan, C.A., et al., 1996, ApJS, 106, 65 (3B BATSE Catalog)

Meegan, C.A., Pendleton, G.N., Briggs, M.S., et al., 1996, ApJS 106, 65
(The Third BATSE Gamma-Ray Burst Catalog)

Meegan, C.A., Pendleton, G.N., Briggs, M.S., et al., 1997, Current BATSE
Gamma-Ray Burst Catalog, http://www.batse.msfc.nasa.gov/data

Meegan, C.A., Hakkila, J., Johnson, A., Pendleton, G., & Mallozzi, R.S.,
2000b, in Gamma-Ray Bursts; 5th Huntsville Symp., eds. R.M. Kippen,
R.S. Mallozzi, G.J. Fishman, AIP, Melville, p.43

Meegan, C.A., Pendleton, G.N., Briggs, M.S., et al.,
2001, The BATSE  Current Gamma-Ray  Burst  Catalog,
http://gammaray.msfc.nasa.gov /batse/grb/catalog/currernt

Mészaros, A., 1997, A&A, 328, 1

Meészaros, A., Bagoly, Z., Horvath, 1., & Mészaros, P., 1996, J. Korean As-
tron. Soc. 29, S43

Mészaros, A., Bagoly, Z., & Vavrek, R., 2000a, A&A, 354, 1

Mészaros, A., Bagoly, Z., Horvath, 1., Balazs, L.G., & Vavrek, R., 2000b,
ApJ, 539, 98

Meészaros, A., & Mészéros, P., 1996, ApJ, 466, 29
Meészaros, A., & Mészéaros, P., 1996, ApJ, 466, 29
Mészéros, A., & Stocek, J., 2003, A&A, 403, 443
Meészaros, A., & Vanysek, V., 1997, A&A, 319, 371
Mészaros, P., 2001, Science, 291, 79

Mészaros, P., 2003, Nature, 423, 809

Meészaros, P., & Mészaros, A., 1995, ApJ, 449, 9
Mészaros, P., & Rees, M. J., 1993, ApJ, 405, 278
Mészaros, P., & Rees, M.J., 1997, ApJ, 482, L.29

Mihalas, D., & Binney, J., 1981, ’Galactic Astronomy’, W.H. Freeman and
Co., San Francisco



154 BIBLIOGRAPHY

Mukherjee, S., Feigelson, E.D., Jogesh Babu, G., Murtagh, F., Fraley, Ch.,
& Raftery, A., 1998, ApJ, 508, 314

Murtagh, F. & Heck, A., 1987, 'Multivariate data analysis’ (Astrophysics
and Space Science Library, Dordrecht: Reidel, 1987)

Nemiroff, R.J., 1995, PASP, 10, 1131
Nikoli¢, S., Johansson, L. E. B., & Harju, J., 2003, A&A, 409, 941
Norris, J.P., Bonnell, J.T., Nemiroff, R.J., et al., 1995, ApJ, 439, 542

Norris, J.P., Cline, T.L., Desai, U.D., Teegarden, B.J., 1984, Nature, 308,
434

Norris, J.P.,; Nemiroff, R.J., Scargle, J.D., et al., 1994, ApJ, 424, 540

Norris, J.P., Scargle, J.D., & Bonnell, J.T., 2000, in 'Gamma-Ray Bursts in
the Afterglow Era’, Proc. of the Intern. Workshop, Rome, Italy, 17-20 Oct.
2000, eds. E. Costa et al., Springer, p.40

Norris, J.P., Scargle, J.D., & Bonnell, J.T., 2001, in 'Gamma-Ray Bursts in
the Afterglow Era’, Proc. Int. Workshop held in Rome, Italy, eds. E. Costa
et al., ESO Astrophysics Symp. (Berlin: Springer), p. 40

Paciesas, W. S., Meegan C.A., Pendleton G.N., et al., 1999, ApJS, 122, 465
(4B BATSE Catalog)

Paczynski, B., 1995, PASP, 107, 1167
Paczynski, B., 1998, ApJ, 497, 145

Patel, N.A., Goldsmith, P.F.; Snell, R.L., Hezel, T., & Xie, T., 1995, ApJ.
447, 721

Patel, N.A., Goldsmith, P.F., Heyer, M.H., Snell, R., & Pratap, P., 1998,
AplJ, 507, 241

Pedlar, A., 1980, MNRAS 192, 179

Peebles, P.J.E. 1993, 'Principles of Physical Cosmology’ (Princeton Univer-
sity Press, Princeton)

Pendleton, C.N., Paciesas, W.S., Briggs, M.S., et al., 1997, ApJ, 489, 175

Petrosian, V., & Lee, T., 1996, ApJ, 467, L.29



BIBLIOGRAPHY 155

Piran, T., 1999, Phys.Rep., 314, 575

Press, W. H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T., 1992,
Numerical Recipes (Cambridge University Press, Cambridge)

Racine, R., 1968, AJ, 73, 233

Rajaniemi, H.J., & Mé&honen, P., 2002, ApJ, 566, 202
Rees, M.J., Mészaros, P., 1994, ApJ, 430, L93

Rees, M.J., & Mészaros, P., 1994, ApJ, 430, L93
Reichart, D.E., & Mészaros, P., 1997, ApJ, 483, 597

Rényi, A., 1962, 'Wahrscheinlichtkeitsrechnung’ (Berlin: VEB Deutscher
Verlag der Wissenschaften)

Rézyczka, M., & Tenorio-Tagle, G., 1985, A&A, 147, 220

Ryde, F., & Petrosian, V., 2002, ApJ, 578, 290

Sato, F., & Fukui, Y., 1989, ApJ, 343, 773

Sato, F., Mizuno, A., Nagahama, T., et al., 1994, ApJ, 435, 279
Savage, B.D., & Mathis, J.S., 1979, ARAA, 17, 73

Schmidt-Kaler, T.H., 1982, In: Landolt-Brnstein New Series, Group 6,
Vol. 2b, Stars and Star Clusters, Schaifers K., Voigt H.H. (eds.) (Berlin:
Springer)

Schuster, A., 1883, British Assoc. Report, 427

Seitter, W.C., 1975, ’Atlas for Objective Prism Spectra’, erd. Dimmler Ver-
lag, Bonn

Sharpless, S., 1959, ApJS, 4, 257

Simonson, S.C., 1968, ApJ, 154, 923

Simonson, S.C., & van Someren Greve, HW., 1976, A&A 49, 343 (SVSG)
Slechta, M., & Mészaros, A., 1997, Ap&SS 249, 1

Snowden, S.L., Freyberg, M.J., Plucinsky, P.P., et al., 1995, ApJ, 454, 643
SPSS inc: http://www.SPSS.com



156 BIBLIOGRAPHY

Stern, B.E., 1996, ApJ, 464, L111

Stern, B., Poutanen, J., & Svensson, R., 1999, ApJ, 510, 312

Stone, R.C., 1979, ApJ, 232, 520

Sugitani, K., Fukui, Y., Mizuno, A., & Ohashi, N., 1989, ApJ, L87
Sume, A., Downes, D., & Wilson, T. L., 1975, A&A, 39, 435

Syer, D., & Saha, P., 1994, ApJ, 427, 714

Sylos-Labini, F., Montuori, M., Pietronero, L., 1998, Phys. Rep., 293, 61

Tegmark, M., Hartmann, D.H., Briggs, M.S., Hakkila, J., & Meegan, C.A.,
1996a, ApJ, 466, 757

Tegmark, M., Hartmann, D.H., Briggs, M.S., & Meegan, C.A., 1996b, ApJ,
468, 214

Tenorio-Tagle G., & Bodenheimer P., 1988, ARAA, 26, 145
Téth, L.V., Horvath, A., & Haikala, L.A., 1995, Ap&SS, 233, 175

Téth, L.V., Mattila, K., Haikala, L., & Balazs, L..G., 1993, in ASP Conf. Ser.
52: ’Astronomical Data Analysis Software and Systems 1", 462

Téth, L.V., & Walmsley, C.M., 1996, A&A, 311, 981

Trumpler, R. J., & Weaver, H. F., 1953, Statistical Astronomy (Berkeley:
University of California Press)

Ulmer, A., & Wijers, R.A.M.J., 1995, ApJ, 439, 303

Usov, V., & Chibisov, G., 1975, SvA, 19, 115

van Paradijs, J., Groot, P.J., Galama, T., et al., 1997, Nature, 386, 686
Wackerling, L.R., 1970, Mem. Roy. Astron. Soc., 73, 153

Wainscoat, R.J., Cohen, M., Volk, K., Walker, H.J., & Schwartz, D.E., 1992,
ApJS, 83, 111

Wakker, B.P., & van Woerden, H., 1991, A&A, 250, 509

Weaver, R., Castor, J., McCray, R., Shapiro, P., & Moore, R., 1977, ApJ,
218, 377



BIBLIOGRAPHY 157

Weikard, H., Wouterloot, J.G.A., Castets, A., Winnewisser, G., & Sugitani,
K., 1996, A&A, 309, 581

Weinberg, S., 1972, ’Gravitation and Cosmology’ (Wiley, New York)

Wheelock, S., Gautier, N., Chillemi, J., et al., 1994, IRAS Sky Survey Atlas,
Explanatory Supplement, Infrared Processing and Analysing Center, Jet
Propulsion Laboratory

Whittet, D.C.B., Gerakines, P.A., Hough, J.H., & Shenoy, S.S., 2001, ApJ,
547, 872

Wijers, R.A.M.J., & Paczynski, B., 1994, ApJ, 437, L.L107

Wilson, R.E., 1963, 'General Catalogue of Stellar Radial Velocities’, Carnegie
Institute of Washington, 601, Washington D.C.

Whitford, A.E., 1958, AJ, 63, 201

Yonekura, Y., Dobashi, K., Mizuno, A., Ogawa, H., & Fukui, Y., 1997, ApJS,
110, 21

Zhou, S., Wu, Y., Evans, N. J., Fuller, G. A., & Myers, P. C., 1989, ApJ,
346, 168



