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Abstract. In this paper we complete the mathematical approach that aimed at
computation of energy levels of bounded states for hydrogen atom in strong magnetic
fields previously. By this accomplishment, we are allowed to compute any bound—
bound dipole strengthfor hydrogen atom in strong magnetic field. In our method
we obtain the values of these quadratic functionals directly. We derive initial value
problems for some first order ordinary differential equations, their solutions provide
to us the required values. Proceeding this way, we avoid both the computation of
eigenfunctions and the cumbersome numerical integration of their compositions. The
stability of our computations can be proven. In opposite to the traditional way, the
accuracy of dipole strengths may be controlled directly.

1. Introduction

Atomic data like transition probabilities and oscillator strengths of hydrogen atom in
strong magnetic field are necessary for modelling the spectra of magnetized white dwarf
or neutron stars. When computing synthetic spectra we have to be aware of the strength
of the lines. For allowed transitions the determination of the required oscillator strengths
and transition probabilities is based on the evaluation of the dipole matrix elements. In
the case of a one—electron system, |p,..|? is the squared Euclidean norm (the sum of the
squared components) of vector

D 1= /\I/*(En)\I/(Em)rdV (1)

where U—s are the eigenfunctions of the atomic system belonging to the eigenvalues E,,
and FE,, respectively, x denotes the complex conjugate. The volume integral is taken
over the whole space. The eigenfunctions are assumed to be orthonormalized by

/ U (E)Y(Ep)dV = G- 2)
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Expression (1) is used generally and it includes a number of considerations concerning
the atom and its interactions with the electromagnetic field. For details see e.g. Schiff
(1968). There are other formulae equivalent to (1) as it was described in the classical
review by Bethe and Salpeter (1957).

Traditionally, when computing |p,m|* for a pair of indices (n,m), the first step is
the numerical solution of the time-independent Schrédinger problem twice, providing in
each turn an eigenvalue E and the corresponding eigenfunction W(E) simultaneously.
Next, the value of the nonvanishing components of p,,,, in (1) is obtained by numerical
integration. Far from the center the eigenfunctions become inaccurate in a lot of
methods. The weight function r in (1) amplifies the inaccuracy. An other source of
errors is the numerical integration algorithm itself. As a result, there is no practical
way to estimate the quality of numerical values for p,,,.

For the diamagnetic Coulomb problem (hidrogen atom in strong, homogeneous
magnetic field) we have elaborated an alternative method for determining the
nonvanishing components of p,.,,. It seems to work in a wider class of non-separable
cases (see Barcza 1994), as well.

2. The general description of the method

Provided the cylindrical coordinates p, z and the azimuthal angle ¢ around the axis z
are introduced, one obtains the coordinates p,, py, p, of vector p,, as follows (subscripts
m,n are omitted):

Pe = [ o:o /0 ) /0 W (B, BB cos pdpdpd
o= [T B RE s pdpdpiz 3)
pe= " [T [T B 0(E) e
The orthonormalization condition (2) rewrites as
[ o:o /0 - /0 T (B, U (B, pdpdpdz = G, (4)

On the other hand, the assumption that the magnetic field H is parallel to axis z yields
the separation of the azimuthal angle in the eigenfunction:

U(En; p, 2,0) = (2m) 712 exp(ing o)t (En; 2, p) (5)
where ng = 0,£1,42,... is the magnetic quantum number, i is the imaginary unit.
We used atomic units (me = e = h = 1) and inroduced the Larmor frequency

w = e|H|/2mec. Substituting (5) into (3), one observes that depending on the value of
Any D ng(V(E)) = ny(U(EL)) = 0 — (6)



the vectors pam differ qualitatively. Namely, when Ang = 0 then p, = p, = 0 and

pe= [ [ V(B U(En)pzdpdz. (7)

(Arguments p, z in ¢ are omitted.) When Anz = +1 then p, = 0 and

Dz 2/ / E,)p’dpdz p, = ﬁ:2/ / E,)p*dpdz. (8)

The latter value is not needed for |p,,|*>. When |Ans| > 1, then p, = p, = p, = 0.
Thus, in each case, the nonvanishing components lead to integrals of the form

= [ [T o) s(p. 2)dpdz (9

pz when Ang =0

where s(p,z):{ ;

1
p° when  Ang= (10)

Let us take parity into consideration. Since ¥(FE) is either odd or even with respect to
z and so is s, one arrives at

2 167 o (B Y (Em)pzdpdz, if Ang =0 and 7} # 7",
I = 2[5 [ U(E)YU(E,)p*dpdz,  if Anz = +1 and 77 = 7, (11)
0 otherwise,
where 7', " denote the z-parity of ¢, ¥, respectively. The normalization condition
(4) yields also an integral of the form (9) with n = m, s(p, z) = p, since one has

/ / E,)pdpdz = % (12)

In order to simplify and unify the description of the method, above indicating the
eigenvalues E,, or E, in the notation of functions derived from the eigenfunctions 1, we
later indicate additionally their parities in superscripts when it seems necessary.

We adopt the framework of Balla and Benks (1996) (hereafter BB96) and define

V(Ey,) as
ka )& (2, p) (13)

where ®2(z,p), ®7,(2,p),... form the Liu-Starace basis belonging to eigenvalues
po(z), pi(z), ... (see BB96, Barcza 1996, Liu and Starace 1987) and orthonormalized
with respect to p by

| B2z (2. p)odp = b (14)
uniformly with respect to z, while E**, ff(z), f1'(2),... solve the eigenproblem
d? fy dfr

=0, (15)

1.2 + 2E" — pg (2)] fr + ZOAZM 2) fr + B (2) P

—o<z<oo, k=0,1,2,...,



with
. ., 0%, n -, 0P, . n
Ap(2) = (P, 37;), Biw (z) = 2(2}, 8—,:)’ E*=FE—wng. (16)
Due to normalizations (12) and (14),

1

[ = (1)

holds. In BB96 we proposed a method for computation of {u(2)}720, {Akk (2)}2%=0
and {B} ()} = which did not require the computation of the Liu-Starace basis
{®7(2)}22, itself. Next, instead of (15) we considered the truncated eigenvalue problem
d2FN drN
dz? +Bn(2) dz
with respect to eigenvalue(s) E*Y and eigenfunction(s) F™(z2) = (f¥(2),..., f¥ 1(z)*
where f{¥(z) are approximations to fi(z) of (15), T denotes the transposition. Here the

+ [An(2) = My (2)]FN = 2E"NFN | 0< 2 < o0, (18)

entries of the skew-symmetrical matrix By(z) were approximations to Bp.(z), k, k' =
0,...,N — 1, while the entries of Ax(z) approximated A}, (z), k,k' =0,...,N — L.
The matrix My(z) was diagonal, My(z) = diag[ug(z),. .., uk_1(z)], containing again
numerical approximations. Note that in fact Ax(z), By(2), Mn(2) depended only on
nf since so did {®7(p, z)}22,.

In BB96 we also elaborated and described a method providing us with the
approximate eigenvalues E*™V without evaluating F™V(z). In order to proceed further
and to get (9) with (12) when (13) is kept, we use the following splitting.

5(p, 2) = psi(p)sa(2) (19)
sip) =s"(p) =1 or si(p) =57 (p) =p (20)
so(z) = sgl)(z) =1 or sy(z)= 352)(,2) =z (21)
Next, let
K () = [ &30, 2087 (0, 2)ostp)dp i = 1,2 (22)

Having K77"(z), (9) turns into

rm =233 Fm (23)

k=01=0

where

Fird = [ s g =12 (24)

With this notations, (12) rewrites as

Z Fpntl = (25)



5

(22) is an integral similar to the one we have computed in BB96. Moreover, due to
the normalization of Liu-Starace basis, K" (2) = 0pq if Ang = 0. In the Appendix
we update the formula and the equations for obtaining K;Lqmi(z) for other values of
the indices. For getting sufficiently accurate results, the number of channels may be
different, this number is denoted by N when belongs to n and by M for m. When N
and M have been fixed, formulae (17), (23) and (24) yield approximations

=2 /0 T PNT() PN (2)dz = 2 /0 T ENT() U () FY (2)dz (26)
=9 /0 T ENT ()0 (2) FM (2)d (27)

where JC"™ (z) is a matrix with entries (K" (2)) = s¥)(z) KI™i(z), k =0,..., N —1,
[ =0,...,M — 1. Thus, (27) is a quadratic functional and it may seem similar to
(22). Application of ideas borrowed from Abramov et al (1980), Birger (1968) to the
computation of Kg;ni(z), however, is worth for adjoint problems, only. In (24), however,
{fi(2)}2 and {fi"(2)}2, comes from the non-selfadjoint problem (15). Neither is
its approximation (18) selfadjoint. Another version of differential factorization due to
Bakhvalov (1973), however, admits extension to the evaluation of quadratic functionals
of eigenfunctions of non-selfadjoint problems. Without going into the arguments leading
to the differential factorization, we recall first the basic steps of Bakhvalov factorization
in terms of the first order system

N+ Pn(z, E)GN =0, 2 <2< 2, (28)
derived from (18) by introducing

GN = P Py(z, E*) = Ow —In (29)
“\ N ) NS ED T Ay - My 2B Iy By )

Here z; is small for n3 = 0, otherwise z; = 0 and 2z, is a large value. The left(=1) and
right(=r) boundary conditions for G(z) at z; and 24,

U™TG(2) =0 (30)
and

UG (26) = 0, (31)

where the z parity 7, is equal e(=even) or o(=o0dd),

oo = () oo = () v = (1), (32)

Oy and Iy are quadratic zero and unit matrices and oy, = (Moon — 2E*IN)%. Now, we
assume that the solutions of (28) satisfying (30) and (31), respectively, are represented

as

G™ (2) = Y'™(2)c™(2), G*(2) = Y"(2)c"(2), (33)



where

dy'lm
dz

YP(z) = (%’j) , Ye(z) = <[I)z> . (35)

Equation for Y (z) is the same, but the initial value is

+ [I2N . }/17rZ (Ylszlerz)fllerzT]fpylwz — 0 (34)

with

. [ (@R as + Iy)7V2
Vi{z00) = <aoo(oonoozoo +Iy)2 ) (36)
while
d
d—c —(YTY) 'YTPYc =0 for indices Ir, and . (37)
z

In the latter formulae (28)—(37) we omitted the index m(n).
We extend the method to the computation of the functionals using the normalization
as follows. (26) rewrites as

TGN TR ()6 )z = % (38)

L e I ] (39)
On On Oy On
Let the right-hand side be decomposed into a sum [~ = [ 4 [7~ and the matrices
HNm (), HN*(2) and the vectors ¢¥'™ ¢ be defined by

where

/ GNT(Q)R™L(O)GN () = N (2) HN (2) M (2), (40)

[T EYHORMQGN (¢ = —eN () HY () (2).

z

Then, discarding N,
dH" ~
d - Hw(wayw)—lwafpyw - YprTyw(wayw)—le o Y’wTKnnllyw — 0’ (41)
z

H“Z(zl) =0y Hr(ZOO)ZON w:lﬂz,r.

Due to normalization the identity
1
CIT(ZC)Hl(ZC)Cl(ZC) - CrT(ZC)Hr(ZC)Cr(ZC) = b% (42)
holds for arbitrary but fixed point z., 2; < 2. < Z. For obtaining c™(z.) and c*(2)
we can use (42) and the continuity condition

Y™ (20)e™ (2.) — Y (2c)c"(2) = 0 (43)
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noting that by equation (34), one has YTY = Iy (for all indicies not indicated here).
Then, c'™(2.) = avy, c'(2.) = avy, where v, is an arbitrary solution of

(Y™ ()Y (2) Y™ (20) Y™ (2) — In) vy = 0, (44)
Vo =Y T2V (2 )vi, a= (VIH™(2.)vi — vEH (2)v2) 2. (45)
Finally, let I?™ = [Z + [/~ and let
[T ENTQR™IQGM Q¢ = M (2)Qnmi ()N (2),
|7 ORI QG (¢ = =M (2)Q ()™ (), (46)
where
Krmid = ( Ko O > . (47)
Onxm Onxwm
Then, for Q™™ one has
d%zmw _ Qe (yme Ty mw) =Ly muT pmymw
—yreTpreTy e (yreTyme)Lgrme _ ymeTgnmijyme — ( (48)
QY™ (21) = Onxmr Q"™ (200) = Onwm-
Now, the functionals can be obtained as
L™ = ™ (2) Q"™ (2e)e™ () — €™ (2) Q"™ (2c) €™ (). (49)

3. Numerical results and conclusions

In order to verify our method we have chosen transitions which cover a wide range of
phyisically relevant parameters. In table 1 we have listed the dipole strengths compared
with those published by Ruder et al (1994). The initial and final states are always
labelled by both their asymptotic quantum numbers: n,, [, n3 if w = 0 and n, ng, v if
w — oo. In figure 1 a Grotrian-type diagram demonstrates the transitions computed
by us at a fixed field strength (w = 1). Altogether, Table 1 and figure 1 show that no
problems arose when computing transitions of different type (neither when Ang = 0
nor when Ang # 0). Difficulties appear neither at higher value of n3 nor for all three
magnitudes of the strength of the field.

In the cases when former results exist, they and our ones confirm each other,
although we used approximations of significantly lower order. We also have computed
dipole strengths for transitions, where — as far as we know — no values has been published
yet.

We want to summarize the main conceptual and practical results of the paper.

The theoretical point:



Table 1. Dipole strengths |p|? for diamagnetic Coulomb problem compared with the
results of Ruder et al (1994) |pr|?. The strength of magnetic field is parametrized by
Larmor frequency w in atomic units. (w = 1 if |H| = 4.7 x 10° T.) The transitions
are labelled by their asymptotic quantum numbers. The number of channnels used in
computation are given in brackets.

transition w |pr|? Ip|?
2% 1/0 ~10+—3d_/0 11 1  1.189 1.187[2]
1.1892[6]
10 3.188-107! 3.19-1071[2]
3.188-1071[4

[
100 8.018-1072 8.235-10721
2p 1/0—10+—3d 2/0—20 1 8.741-1071 8.743-1071]
10 9.665-107% 9.665- 1072
100 9.901-107% 9.905-103[1

3p_1/0—12+—3d_1/0—11 1 8241 8.2408]6]
10 4.369 4.3688]2]
100 3.303 3.308]1]

3p_1/0— 12— 3d_2/0—20 1 9.146 - 10—2  9.147 - 10~3[6]
10 2.465-107*%  2.464-107%[4]
100 7.391-107% 7.398-107°[1]
2p_1/0—10+—4d_1/0—13 1 — 4.4502 - 10~[6]
|
1

10 — 9.699 - 1034

100 — 1.7276 - 10 2[1]
3p_1/0—12«+—4d_1/0—13 1 — 4.3792 - 1026

10 — 1.2318 - 103[4]

100 — 7.2918]1]
3d_2/0—20+—4f_»,/0—21 1 — 1.7866(6]

10— 4.3063 - 1071 [4]

100 — 1.2401 - 10~ (1]
4f_2/0—21—4d_5/0—22 1 — 9.6021[6]

10 — 5.1284[4]

100 — 2.9267[1]
2p_1/0— 10 «+—4d_»/0—22 1 — 1.649 - 10~4[6]

10 — 1.359 - 10~°[4]

100 — 7.496 - 10~6[1]




(i)

(iii)

—E[E]

+1 -1 +1 -1 +1 -1 +1 -1 +1
n;=0 nz=-—1 ny=-2 ny=-—3 ny=—4

Figure 1. A Grotrian type diagram demostrating the calculated transitions (w = 1).
Dipole strength were computed by either Ruder et al (1994) (dotted lines) or us (dashed
lines) or by both (continuous lines).

It is known, that the computation of a quadratic functional where the matrix
functions are solutions of selfadjoint problem is straightforward, see Kitoroage et al
(1989). We showed now that a similar idea applies to quadratic functionals for a set
of non-selfadjoint cases in the frame of Bakhvalov factorization. The factorization
method in general has numerous advantages compared to the other treatments.
Among others, for getting the eigenvalues it does not require computation of the
eigenfunctions.

The theoretical observation (i) allowed us to develop a mathematically consistent
method for computing both the eigenvalues — that is the energy levels — and the
quadratic functionals — transition probabilities — for a non-separable quantum
mechanical problem, namely, the diamagnetic Coulomb problem by the use of a
non-trivial basis. This paper completed the mathematical studies of our previous
work BB96. From an other point of view, these two papers may be considered as
an analysis of the problem in Liu—Starace basis in non-adiabatic approximation.

The practical point:

We have shown that for arbitrary transitions our calculations and the former ones
are consistent while we have used only a few channels to reach the same accuracy.
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(iv) We have determined dipole strengths for some transitions for the first time.

Appendix

Computation of K™ (z).
In analogy with the procedure described in BB96 for getting functionals I’ , let

pq’
nmi _.n m nmil nmir
qu (Z) - Tp (pC7 Z)Tq (pC7 Z)[kpq (pC7 Z) - kpq (pC7 Z)]

where, as in BB96, (s, 2) = [h(pe, 2) — hi¥(pe, 2)] V2 and (t,5) = (m,q) or (n,p),
while

dkg(;mw(paz) Sineg(pa Z) COSHZL(Pa Z) (2)

= [vp(p, 2) + 07" (p, 2) kg™ (p, 2) + s1°(p)

dp vp(p)vq(p)
. vhovm
knmzl(po, Z) — p0~q0 : p2+z + O( 3+Z)
P (3 + 3D G + (3 D1+ + [n5] + [n3)"
nmir _ VPOOVQOO —4+1 —5+1
kpq (pooaz) - Tpoo +O( )

Equation for K::uw coincides with (35) in BB96 if the proper change of weight function

m

is taken into account. The difference is in vy, vy* where different n3, n3' may appear.

q
Above these values, the behaviour of the new weight functions have an impact on the

initial values. All other quantities were defined and/or computed in BB96.

Implementation.

The computations of the components of dipole matrix elements (7) and (8) were
carried out by a FORTRAN program running on a Sun workstation. Some subroutines of
standard numerical methods were taken from Press et al (1992). The input parameters
E™, E*, P™(z), P"(2) and K" (z) were provided by a slightly modified version of the
program described in BB96.

We evaluated the functionals in two subsequent steps. First, we solved the matrix
differential equations (34) and (41) for pairs Y™V (2), H™"(z) and Y™ (z), H™M(z),
simultaneously. The fourth order Runge-Kutta process was modified to solve matrix
equations with an adaptive stepsize control. We integrated the equations from both
z1 and zo, to z.. Determination of c is equivalent to finding an arbitrary eigenvector
belonging to the eigenvalue 1 of the algebraic problem (44). We have found ¢ by the help
of a Jacobi algorithm which provides approximation to the complete set of eigenvalues.
The eigenvalue closest to 1 was chosen and its eigenvector was normalized by (45). The
difference of the best eigenvalue from the value 1 indicated the accuracy of our c, as
well.

For the second main step, we solved the matrix differential equation (48) for Q™" (z)
from the 2, 2Q to z, where z and zQ were chosen so that Q"™ (z) be defined in the
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common part of the interval of definition of H™V(z) and H™(z). In all necessary cases
linear interpolation was applied. When inverses appeared, the matrices were inverted
by a Cholesky-type decomposition.

Errata to BB96.
Here would like to indicate the error occuring in (37) in BB96. The correct
expressions there should be

: 1§VpooVgoo P2 _
kpé(poo) = L2 258 + O(p 7)
: Voo Vaoo P -
k22 (poo) = 0Poodxclee. %qg +0(p )

A correction also should be made on p. 6751. h.(p) ~ p 0352, Wp=3 h0 =12 /(263).
This correction improves the behaviour of our method for smaller w.
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