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t. In this paper we 
omplete the mathemati
al approa
h that aimed at
omputation of energy levels of bounded states for hydrogen atom in strong magneti
�elds previously. By this a

omplishment, we are allowed to 
ompute any bound{bound dipole strengthfor hydrogen atom in strong magneti
 �eld. In our methodwe obtain the values of these quadrati
 fun
tionals dire
tly. We derive initial valueproblems for some �rst order ordinary di�erential equations, their solutions provideto us the required values. Pro
eeding this way, we avoid both the 
omputation ofeigenfun
tions and the 
umbersome numeri
al integration of their 
ompositions. Thestability of our 
omputations 
an be proven. In opposite to the traditional way, thea

ura
y of dipole strengths may be 
ontrolled dire
tly.

1. Introdu
tionAtomi
 data like transition probabilities and os
illator strengths of hydrogen atom instrong magneti
 �eld are ne
essary for modelling the spe
tra of magnetized white dwarfor neutron stars. When 
omputing syntheti
 spe
tra we have to be aware of the strengthof the lines. For allowed transitions the determination of the required os
illator strengthsand transition probabilities is based on the evaluation of the dipole matrix elements. Inthe 
ase of a one{ele
tron system, jpnmj2 is the squared Eu
lidean norm (the sum of thesquared 
omponents) of ve
torpnm := Z 	�(En)	(Em)rdV (1)where 	{s are the eigenfun
tions of the atomi
 system belonging to the eigenvalues Emand En, respe
tively, � denotes the 
omplex 
onjugate. The volume integral is takenover the whole spa
e. The eigenfun
tions are assumed to be orthonormalized byZ 	�(En)	(Em)dV = Ænm: (2)



2Expression (1) is used generally and it in
ludes a number of 
onsiderations 
on
erningthe atom and its intera
tions with the ele
tromagneti
 �eld. For details see e.g. S
hi�(1968). There are other formulae equivalent to (1) as it was des
ribed in the 
lassi
alreview by Bethe and Salpeter (1957).Traditionally, when 
omputing jpnmj2 for a pair of indi
es (n;m), the �rst step isthe numeri
al solution of the time-independent S
hr�odinger problem twi
e, providing inea
h turn an eigenvalue E and the 
orresponding eigenfun
tion 	(E) simultaneously.Next, the value of the nonvanishing 
omponents of pnm in (1) is obtained by numeri
alintegration. Far from the 
enter the eigenfun
tions be
ome ina

urate in a lot ofmethods. The weight fun
tion r in (1) ampli�es the ina

ura
y. An other sour
e oferrors is the numeri
al integration algorithm itself. As a result, there is no pra
ti
alway to estimate the quality of numeri
al values for pnm.For the diamagneti
 Coulomb problem (hidrogen atom in strong, homogeneousmagneti
 �eld) we have elaborated an alternative method for determining thenonvanishing 
omponents of pnm. It seems to work in a wider 
lass of non-separable
ases (see Bar
za 1994), as well.
2. The general des
ription of the methodProvided the 
ylindri
al 
oordinates �; z and the azimuthal angle ' around the axis zare introdu
ed, one obtains the 
oordinates px; py; pz of ve
tor pnm as follows (subs
riptsm;n are omitted):px = Z 1�1 Z 10 Z 2�0 	�(En)	(Em)�2 
os'd'd�dzpy = Z 1�1 Z 10 Z 2�0 	�(En)	(Em)�2 sin'd'd�dz (3)pz = Z 1�1 Z 10 Z 2�0 	�(En)	(Em)�zd'd�dzThe orthonormalization 
ondition (2) rewrites asZ 1�1 Z 10 Z 2�0 	�(En)	(Em)�d'd�dz = Ænm: (4)On the other hand, the assumption that the magneti
 �eld H is parallel to axis z yieldsthe separation of the azimuthal angle in the eigenfun
tion:	(En; �; z; ') = (2�)�1=2 exp(inn3') (En; z; �) (5)where n3 = 0;�1;�2; : : : is the magneti
 quantum number, i is the imaginary unit.We used atomi
 units (me = e = �h = 1) and inrodu
ed the Larmor frequen
y! = ejHj=2me
. Substituting (5) into (3), one observes that depending on the value of�n3 def= n3(	(Em))� n3(	(En)) = nm3 � nn3 (6)



3the ve
tors pnm di�er qualitatively. Namely, when �n3 = 0 then px = py = 0 andpz = Z 1�1 Z 10  (En) (Em)�zd�dz: (7)(Arguments �; z in  are omitted.) When �n3 = �1 then pz = 0 andpx = 12 Z 1�1 Z 10  (En) (Em)�2d�dz py = � i2 Z 1�1 Z 10  (En) (Em)�2d�dz: (8)The latter value is not needed for jpnmj2. When j�n3j > 1, then pz = px = py = 0.Thus, in ea
h 
ase, the nonvanishing 
omponents lead to integrals of the formInms = Z 1�1 Z 10  (En) (Em)s(�; z)d�dz (9)
where s(�; z) = ( �z when �n3 = 0�2 when �n3 = �1: (10)

Let us take parity into 
onsideration. Sin
e  (E) is either odd or even with respe
t toz and so is s, one arrives at
Inms = 8>><>>: 2 R10 R10  (En) (Em)�zd�dz; if �n3 = 0 and �nz 6= �mz ;2 R10 R10  (En) (Em)�2d�dz; if �n3 = �1 and �nz = �mz ;0 otherwise, (11)
where �nz , �mz denote the z-parity of  n,  m, respe
tively. The normalization 
ondition(4) yields also an integral of the form (9) with n = m, s(�; z) = �, sin
e one hasZ 10 Z 10  2(En)�d�dz = 12 : (12)In order to simplify and unify the des
ription of the method, above indi
ating theeigenvalues Em or En in the notation of fun
tions derived from the eigenfun
tions  , welater indi
ate additionally their parities in supers
ripts when it seems ne
essary.We adopt the framework of Balla and Benk}o (1996) (hereafter BB96) and de�ne (Em) as  (En) = 1Xk=0 fnk (z)�̂nk(z; �) (13)
where �̂n0(z; �); �̂n1 ; (z; �); : : : form the Liu-Stara
e basis belonging to eigenvalues�n0 (z); �n1 (z); : : : (see BB96, Bar
za 1996, Liu and Stara
e 1987) and orthonormalizedwith respe
t to � byZ 10 �̂nk(z; �)�̂nl (z; �)�d� � Ækl (14)uniformly with respe
t to z, while E�n, fn0 (z), fn1 (z); : : : solve the eigenproblemd2fkdz2 + [2E� � �nk(z)℄fk + 1Xk0=0[Ankk0(z)fk0 +Bnkk0(z)dfk0dz ℄ = 0; (15)�1 < z <1; k = 0; 1; 2; : : : ;



4with Ankk0(z) = (�̂nk ; �2�̂nk0�z2 ); Bnkk0(z) = 2(�̂nk ; ��̂nk0�z ); E� = E � !nn3 : (16)Due to normalizations (12) and (14),Z 10 1Xk=0[fnk (z)℄2dz = 12 (17)holds. In BB96 we proposed a method for 
omputation of f�nk(z)g1k=0, fAnkk0(z)g1k;k0=0and fBnkk0(z)g1k;k0=0 whi
h did not require the 
omputation of the Liu-Stara
e basisf�̂nk(z)g1k=0 itself. Next, instead of (15) we 
onsidered the trun
ated eigenvalue problemd2FNdz2 + BN (z)dFNdz + [AN (z)�MN (z)℄FN = �2E�NFN ; 0 < z <1; (18)with respe
t to eigenvalue(s) E�N and eigenfun
tion(s) FN (z) = (fN0 (z); : : : ; fNN�1(z))Twhere fNk (z) are approximations to fk(z) of (15), T denotes the transposition. Here theentries of the skew-symmetri
al matrix BN(z) were approximations to Bnkk0(z); k; k0 =0; : : : ; N � 1, while the entries of AN(z) approximated Ankk0(z); k; k0 = 0; : : : ; N � 1.The matrix MN (z) was diagonal, MN (z) = diag[�n0 (z); : : : ; �nN�1(z)℄, 
ontaining againnumeri
al approximations. Note that in fa
t AN (z);BN(z);MN(z) depended only onnn3 sin
e so did f�̂nk(�; z)g1k=0.In BB96 we also elaborated and des
ribed a method providing us with theapproximate eigenvalues E�nN without evaluating F nN (z). In order to pro
eed furtherand to get (9) with (12) when (13) is kept, we use the following splitting.s(�; z) = �s1(�)s2(z) (19)s1(�) = s(1)1 (�) � 1 or s1(�) = s(2)1 (�) = � (20)s2(z) = s(1)2 (z) � 1 or s2(z) = s(2)2 (z) = z: (21)Next, let Knmipq (z) = Z 10 �̂np (�; z)�̂mq (�; z)�s(i)1 (�)d� i = 1; 2: (22)Having Knmipq (z), (9) turns intoInms = 2 1Xk=0 1Xl=0Fnmijkl (23)where Fnmijkl = Z 10 fnk (z)fml (z)s(j)2 (z)Knmikl (z)dz j = 1; 2: (24)With this notations, (12) rewrites as2 1Xk=0Fnn11kk = 1: (25)



5(22) is an integral similar to the one we have 
omputed in BB96. Moreover, due tothe normalization of Liu-Stara
e basis, Knm1pq (z) � Æpq if �n3 = 0. In the Appendixwe update the formula and the equations for obtaining Knmipq (z) for other values ofthe indi
es. For getting suÆ
iently a

urate results, the number of 
hannels may bedi�erent, this number is denoted by N when belongs to n and by M for m. When Nand M have been �xed, formulae (17), (23) and (24) yield approximations1 = 2 Z 10 FNT(z)FN(z)dz = 2 Z 10 FNT(z)Knn11(z)FN (z)dz (26)
Inms = 2 Z 10 FNT(z)Knmij(z)FM(z)dz (27)where Knmij(z) is a matrix with entries (Knmij(z))kl = s(j)2 (z)Knmikl (z), k = 0; : : : ; N�1,l = 0; : : : ;M � 1. Thus, (27) is a quadrati
 fun
tional and it may seem similar to(22). Appli
ation of ideas borrowed from Abramov et al (1980), Birger (1968) to the
omputation of Knmipq (z), however, is worth for adjoint problems, only. In (24), however,ffnk (z)g1k=0 and ffmk (z)g1k=0 
omes from the non-selfadjoint problem (15). Neither isits approximation (18) selfadjoint. Another version of di�erential fa
torization due toBakhvalov (1973), however, admits extension to the evaluation of quadrati
 fun
tionalsof eigenfun
tions of non-selfadjoint problems. Without going into the arguments leadingto the di�erential fa
torization, we re
all �rst the basi
 steps of Bakhvalov fa
torizationin terms of the �rst order systemGN 0 + PN(z; E�)GN = 0; z1 � z � z1; (28)derived from (18) by introdu
ingGN =  FNFN 0 ! ; PN(z; E�) =  0N �INAN �MN + 2E�IN BN ! : (29)Here z1 is small for n3 = 0, otherwise z1 = 0 and z1 is a large value. The left(=l) andright(=r) boundary 
onditions for G(z) at z1 and z1U l�zTG(z1) = 0 (30)and U rTG(z1) = 0; (31)where the z parity �z is equal e(=even) or o(=odd),U le(z1) =  0NIN ! ; U lo(z1) =  IN0N ! ; U r(z1) =  ��T1IN ! ; (32)0N and IN are quadrati
 zero and unit matri
es and �1 = (M1N � 2E�IN ) 12 . Now, weassume that the solutions of (28) satisfying (30) and (31), respe
tively, are representedas Gl�z(z) = Y l�z(z)
l�z(z); Gr(z) = Y r(z)
r(z); (33)



6where dY l�zdz + [I2N � Y l�z(Y l�zTY l�z)�1Y l�zT℄PY l�z = 0 (34)with Y lo(z1) =  0NIN ! ; Y le(z1) =  IN0N ! : (35)Equation for Y r(z) is the same, but the initial value isY r(z1) =  (�T1�1 + IN )�1=2�1(�T1�1 + IN )�1=2! ; (36)while d
dz � (Y TY )�1Y TPY 
 = 0 for indi
es l�z and r. (37)In the latter formulae (28){(37) we omitted the index m(n).We extend the method to the 
omputation of the fun
tionals using the normalizationas follows. (26) rewrites asZ 10 GNT(z) ~Knn11(z)GN(z)dz = 12 ; (38)where ~Knn11 =  Knn11 0N0N 0N ! =  IN 0N0N 0N ! : (39)Let the right-hand side be de
omposed into a sum R z1z1 = R zz1 + R z1z and the matri
esHN l�z(z), HNr(z) and the ve
tors 
N l�z, 
Nr be de�ned byZ zz1 GNT(�) ~Knn11(�)GN(�)d� = 
N l�zT(z)HN l�z(z)
N l�z(z); (40)Z z1z GNT(�) ~Knn11(�)GN(�)d� = �
NrT(z)HNr(z)
Nr(z):Then, dis
arding N ,dHwdz �Hw(Y wTY w)�1Y wTPY w � Y wTPTY w(Y wTY w)�1Hw � Y wT ~Knn11Y w = 0; (41)H l�z(z1) = 0N Hr(z1) = 0N w = l�z; r:Due to normalization the identity
lT(z
)H l(z
)
l(z
)� 
rT(z
)Hr(z
)
r(z
) = 12 ; (42)holds for arbitrary but �xed point z
, z1 � z
 < z1. For obtaining 
l�z(z
) and 
r(z
)we 
an use (42) and the 
ontinuity 
onditionY l�z(z
)
l�z(z
)� Y r(z
)
r(z
) = 0 (43)



7noting that by equation (34), one has Y TY � IN (for all indi
ies not indi
ated here).Then, 
l�z(z
) = av1, 
r(z
) = av2, where v1 is an arbitrary solution of(Y l�zT(z
)Y r(z
)Y rT(z
)Y l�z(z
)� IN)v1 = 0; (44)v2 = Y rT(z
)Y li(z
)v1; a = (vT1H l�z(z
)v1 � vT2Hr(z
)v2)� 12 : (45)Finally, let Inms = R zz1 + R z1z and letZ zz1 GNT(�) ~Knmij(�)GM(�)d� = 
M l�zT(z)Qnml�z(z)
N l�z(z);Z z1z GNT(�) ~Knmij(�)GM(�)d� = �
MrT(z)Qnmr(z)
Nr(z); (46)where ~Knmij =  Knmij 0N�M0N�M 0N�M ! : (47)Then, for Qnmw one hasdQnmwdz �Qnmw(Y mwTY mw)�1Y mwTPmY mw�Y nwTPnwTY nw(Y nwTY nw)�1Qnmw � Y mwT ~KnmijY nw = 0 (48)Qnml�z(z1) = 0N�M Qnmr(z1) = 0N�M :Now, the fun
tionals 
an be obtained asInms = 
mlT(z
)Qnml(z
)
nl(z
)� 
mrT(z
)Qnmr(z
)
nr(z
): (49)
3. Numeri
al results and 
on
lusionsIn order to verify our method we have 
hosen transitions whi
h 
over a wide range ofphyisi
ally relevant parameters. In table 1 we have listed the dipole strengths 
omparedwith those published by Ruder et al (1994). The initial and �nal states are alwayslabelled by both their asymptoti
 quantum numbers: np, l, n3 if ! = 0 and n, n3, � if! ! 1. In �gure 1 a Grotrian-type diagram demonstrates the transitions 
omputedby us at a �xed �eld strength (! = 1). Altogether, Table 1 and �gure 1 show that noproblems arose when 
omputing transitions of di�erent type (neither when �n3 = 0nor when �n3 6= 0). DiÆ
ulties appear neither at higher value of n3 nor for all threemagnitudes of the strength of the �eld.In the 
ases when former results exist, they and our ones 
on�rm ea
h other,although we used approximations of signi�
antly lower order. We also have 
omputeddipole strengths for transitions, where { as far as we know { no values has been publishedyet.We want to summarize the main 
on
eptual and pra
ti
al results of the paper.The theoreti
al point:
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Table 1. Dipole strengths jpj2 for diamagneti
 Coulomb problem 
ompared with theresults of Ruder et al (1994) jpRj2. The strength of magneti
 �eld is parametrized byLarmor frequen
y ! in atomi
 units. (! = 1 if jHj = 4:7 � 105 T.) The transitionsare labelled by their asymptoti
 quantum numbers. The number of 
hannnels used in
omputation are given in bra
kets.transition ! jpRj2 jpj22p�1=0� 10 ! 3d�1=0� 11 1 1:189 1:187[2℄1:1892[6℄10 3:188 � 10�1 3:19 � 10�1[2℄3:188 � 10�1[4℄100 8:018 � 10�2 8:235 � 10�2[1℄2p�1=0� 10 ! 3d�2=0� 20 1 8:741 � 10�1 8:743 � 10�1[6℄10 9:665 � 10�2 9:665 � 10�2[4℄100 9:901 � 10�3 9:905 � 10�3[1℄3p�1=0� 12 ! 3d�1=0� 11 1 8:241 8:2408[6℄10 4:369 4.3688[2℄100 3:303 3.308[1℄3p�1=0� 12 ! 3d�2=0� 20 1 9:146 � 10�3 9:147 � 10�3[6℄10 2:465 � 10�4 2:464 � 10�4[4℄100 7:391 � 10�6 7:398 � 10�6[1℄2p�1=0� 10 ! 4d�1=0� 13 1 | 4:4502 � 10�4[6℄10 | 9:699 � 10�3[4℄100 | 1:7276 � 10�2[1℄3p�1=0� 12 ! 4d�1=0� 13 1 | 4:3792 � 10�2[6℄10 | 1:2318 � 10�3[4℄100 | 7:2918[1℄3d�2=0� 20 ! 4f�2=0� 21 1 | 1:7866[6℄10 | 4:3063 � 10�1[4℄100 | 1:2401 � 10�1[1℄4f�2=0� 21 ! 4d�2=0� 22 1 | 9:6021[6℄10 | 5:1284[4℄100 | 2:9267[1℄2p�1=0� 10 ! 4d�2=0� 22 1 | 1:649 � 10�4[6℄10 | 1:359 � 10�5[4℄100 | 7:496 � 10�6[1℄
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Figure 1. A Grotrian type diagram demostrating the 
al
ulated transitions (! = 1).Dipole strength were 
omputed by either Ruder et al (1994) (dotted lines) or us (dashedlines) or by both (
ontinuous lines).
(i) It is known, that the 
omputation of a quadrati
 fun
tional where the matrixfun
tions are solutions of selfadjoint problem is straightforward, see Kitoroage et al(1989). We showed now that a similar idea applies to quadrati
 fun
tionals for a setof non-selfadjoint 
ases in the frame of Bakhvalov fa
torization. The fa
torizationmethod in general has numerous advantages 
ompared to the other treatments.Among others, for getting the eigenvalues it does not require 
omputation of theeigenfun
tions.(ii) The theoreti
al observation (i) allowed us to develop a mathemati
ally 
onsistentmethod for 
omputing both the eigenvalues { that is the energy levels { and thequadrati
 fun
tionals { transition probabilities { for a non-separable quantumme
hani
al problem, namely, the diamagneti
 Coulomb problem by the use of anon-trivial basis. This paper 
ompleted the mathemati
al studies of our previouswork BB96. From an other point of view, these two papers may be 
onsidered asan analysis of the problem in Liu{Stara
e basis in non-adiabati
 approximation.The pra
ti
al point:(iii) We have shown that for arbitrary transitions our 
al
ulations and the former onesare 
onsistent while we have used only a few 
hannels to rea
h the same a

ura
y.



10(iv) We have determined dipole strengths for some transitions for the �rst time.
AppendixComputation of Knmipq (z).In analogy with the pro
edure des
ribed in BB96 for getting fun
tionals I ipq, letKnmipq (z) = rnp (�
; z)rmq (�
; z)[knmilpq (�
; z)� knmirpq (�
; z)℄where, as in BB96, rts(�
; z) = [htls (�
; z) � htrs (�
; z)℄�1=2 and (t; s) = (m; q) or (n; p),whiledknmiwpq (�; z)d� = [vnp (�; z) + vmq (�; z)℄knmiwpq (�; z) + sin �np (�; z) 
os �mq (�; z)�p(�)�q(�) s(i)1 (�)

knmilpq (�0; z) = �np0�mq0(12 + jnn3 j)(12 + jnm3 j)(1 + i+ jnn3 j+ jnm3 j)�2+i0 +O(�3+i0 )
knmirpq (�1; z) = ��np1�mq12!3 ��4+i1 +O(��5+i1 ):Equation for Knmiwpq 
oin
ides with (35) in BB96 if the proper 
hange of weight fun
tionis taken into a

ount. The di�eren
e is in vnp , vmq where di�erent nn3 , nm3 may appear.Above these values, the behaviour of the new weight fun
tions have an impa
t on theinitial values. All other quantities were de�ned and/or 
omputed in BB96.Implementation.The 
omputations of the 
omponents of dipole matrix elements (7) and (8) were
arried out by a FORTRAN program running on a Sun workstation. Some subroutines ofstandard numeri
al methods were taken from Press et al (1992). The input parametersEm, En, Pm(z), Pn(z) and Knmipq (z) were provided by a slightly modi�ed version of theprogram des
ribed in BB96.We evaluated the fun
tionals in two subsequent steps. First, we solved the matrixdi�erential equations (34) and (41) for pairs Y nN(z), HnN(z) and Y mM(z), HmM(z),simultaneously. The fourth order Runge{Kutta pro
ess was modi�ed to solve matrixequations with an adaptive stepsize 
ontrol. We integrated the equations from bothz1 and z1 to z
. Determination of 
 is equivalent to �nding an arbitrary eigenve
torbelonging to the eigenvalue 1 of the algebrai
 problem (44). We have found 
 by the helpof a Ja
obi algorithm whi
h provides approximation to the 
omplete set of eigenvalues.The eigenvalue 
losest to 1 was 
hosen and its eigenve
tor was normalized by (45). Thedi�eren
e of the best eigenvalue from the value 1 indi
ated the a

ura
y of our 
, aswell.For the se
ond main step, we solved the matrix di�erential equation (48) forQnmw(z)from the zQ0 , zQ1 to z
, where zQ0 and zQ1 were 
hosen so that Qnmw(z) be de�ned in the
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ommon part of the interval of de�nition of HnN(z) and HmM(z). In all ne
essary 
aseslinear interpolation was applied. When inverses appeared, the matri
es were invertedby a Cholesky-type de
omposition.Errata to BB96.Here would like to indi
ate the error o

uring in (37) in BB96. The 
orre
texpressions there should be
kr1pq(�1) = ~l10�p1�q1��612�30 +O(��7)
kr2pq(�1) = ~l20�p1�q1��812�30 +O(��9)

A 
orre
tion also should be made on p. 6751. hr(�) � ��6P1j=0 h(j)r ��j, h(0)r = �21=(2�30).This 
orre
tion improves the behaviour of our method for smaller !.
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