EXors

Ágnes Kóspál ESA Fellow ESTEC, Noordwijk, The Netherlands

Oort Workshop, Leiden, May 13-15, 2014

EXors: what are they?

Herbig 1989:

- Stars that mimic FUors in that they show sudden flare-ups from minimum light at irregular intervals
- At maximum light: T Tauri-like emission spectrum, stellar photosphere is masked/undetectable
- Less luminous than FUors
- Outbursts are short-lived, repetitive
- PV Cep, EX Lup (giving name to the whole group),
 NY Ori, VIII8 Ori, VII43 Ori, UZ Tau E, VY Tau,
 DR Tau

PPVI list (Audard et al. 2014)

Name	Distance (pc)	A _V (mag)	L _{bol} (M ∘)	M _{acc} (M∘/yr)	Companion
VII80 Cas?	600	4.3	0.07 (L)	>1.6e-7 (L)	Y?
V512 Per	300	•••	66 (L)	•••	•••
XZ Tau?	140	1.4	0.5	le-7	Υ
UZ Tau E	140	1.5	1.7	I−3e-7	Υ
VY Tau	140	0.85	0.75	•••	Υ
LDN 1415 IRS ?	170	•••	>0.13 (L)	•••	•••
VIII8 Ori	414	0-2	1.4 (L), 7-25 (H)	2.5e-7 (L), Ie-6 (H)	Υ
NY Ori	414	0.3	•••	•••	Ν
VII43 Ori	500	•••	•••	•••	•••
V1647 Ori ?	400	8-19	3.5-5.6, 34-44	6e-7 (L), 4e-6-1e-5 (H)	•••
V723 Car ?	•••	•••	•••	•••	•••
GM Cha?	160	≥13	>1.5	le-7	Υ
EX Lup	155	0	0.7, 2	4e-10 (L), 2e-7 (H)	Y?
PV Cep?	325	12	41 (L), 100 (H)	2e-7-3e-6 (L), 5e-6 (H)	•••
V2492 Cyg	600	6-12,10-20	14 (L), 43 (H)	2.5e-7 (H)	•••

EXors: a heterogeneous group?

- Low-luminosity eruptive objects, but not considered EXors: HBC 722, V2775 Ori (L_{bol} = 10-50 L_☉ in outburst)
- Objects with outburst/repetition timescale inbetween FUors and EXors: OO Ser, V1647 Ori
- Objects where the brightening is partly due to decreasing extinction: V1647 Ori, V2492 Cyg, PV Cep
- Embedded/Class I objects: V723 Car, GM Cha, V2492 Cyg, V1647 Ori

New class? Are FUors and EXors part of a continuum?

Observational advantages

- Short timescale: brightening and fading can conveniently be studied because they happen within a few months/few years
- If you miss an outburst, just wait for the next, it will happen again in a few years (except for VY Tau)
- Progenitor (i.e. quiescent state) can be well studied

Prototype: EX Lup

- Spectral type: M0
- Close to the Lupus 3 SFR
- Distance: 155 pc
- Age: I-3 Myr

Prototype: EX Lup

Evidence for episodic accretion?

Episodic crystallization

- Above 1000 K: thermal annealing
- Above I500 K: evaporation

Juhász et al. (2012) Ábrahám et al. (Nature, 2009)

Silicate crystals in motion

Time

Radial transport

Juhász et al. (2012)

Could the crystalline material of Solar System comets have been "cooked" in EXor-type outbursts around the young Sun?

Comet Tempel/I
Crystalline fraction: > 80%

Why do EXors erupt?

- Do all T Tauri stars produce outbursts?
- Are EXors special in some way?
- EX Lup's specialties:
 - inner hole
 - companion

The role of inner holes?

 Inner hole in the quiescent EX Lup system:

 $r_{in} = 0.2 \text{ au} \leftrightarrow r_{subl} = 0.05 \text{ au}$

- Inner holes in other EXors?
- Where does the accumulated material pile up?

Sipos et al. (2009)

Ábrahám et al. (2009)

Sipos & Kóspál (in prep.)

The role of companions?

EX Lup:
Possible brown
dwarf companion
orbiting within the
dust-free inner hole

Parameter	Fitted value	Unit
Period	7.417 ± 0.001	day
RV semi-amplitude	2.18 ± 0.10	km s ⁻¹
Eccentricity	0.23 ± 0.05	
m sin i	14.7 ± 0.7	$M_{Jupiter}$
Semi-major axis	0.063 ± 0.005	au

Kóspál et al. (2014)

The role of companions?

- Several EXors are known binaries
 (7/15, i.e. 47% of the sample)
- How does the companion affect the accretion process?
- Does the companion cause pulsed accretion?

In UZ Tau E – yes - In EX Lup – maybe

 Speculation: does the companion prevent steady accretion and induce outbursts?

Artymowicz & Lubow (1996)

Jensen et al. (2007)

Active disk regions?

CRIRES monitoring:

- Narrow line region:
 constant in time
- Broad line region: decays with the outburst
- Dust-free inner hole is filled up with gas Goto et al. (2011)

Boundary layer/accretion column?

SINFONI spectra:

- Spectro-astrometry for the Br gamma line
- High-velocity gas is present much farther from the star than what is expected for a Keplerian disk

Kóspál et al. (2012)

The star's immediate vicinity

Sicilia-Aguilar et al. (2012)

Kulkarni & Romanova (2008)

FEROS and HARPS monitoring:

 Accretion goes through the same channels both in outburst and in quiescence

Missing pieces:

- mol. outflow? HH object?
- magnetic field?

Outburst mechanism for EXors?

Are EXors the down-scaled versions of FUors? Do they occur at a later evolutionary phase than FUor bursts?

Disk instability:

- self-regulated thermal instability (Bell & Lin 1994)
- thermal instability induced by a planet (Lodato & Clarke et al. 2004)
- gravitational + magnetorotational instability (Zhu et al. 2009)
- disk fragmentation (Vorobyov & Basu 2010)

Perturbation by external body:

- close encounter with nearby star (Pfalzner et al. 2008)

Outburst mechanism for EX Lup?

- Gravitational instability? No disk is not too massive ($M_{disk} = 0.025 M_{\odot}$)
- Self-regulated thermal instability?
 No brightening is too fast
- Mass transfer occurs on the viscous timescale.
 Duration of the outburst: 10 months → radius from where material could be accreted onto the star: 0.12 au
- Mass reservoir should have been in the dust-free inner hole, where only optically thin gas could be present
- Critical mass accretion rate in the Bell & Lin model: 5x10⁻⁷ M_☉/yr, much higher than in the quiescent EX Lup system

Future prospects: large surveys

- GAIA
- Pan-STARRS
- LSST

- Discover many more outbursting objects
- Trigger follow-ups

Future prospects: high spatial res.

- ALMA, NOEMA: kinematics of the circumstellar material (non-Keplerian?), chemistry (changes?)
- MATISSE: inner part of the dust disk (re-arrangement of material? evaporation?)
- LBT: gaseous material in the innermost regions (where is the material that piles up before the outburst?)
- JWST, SPICA: push the study of young eruptive stars to earlier evolutionary phases and to farther-off starforming regions