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The Inner Regions of Protoplanetary Disks

Near-IR interferometry

ALMA

Mid-IR interferometry
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Rich structure

* Large dynamic range

- spatial scale: few stellar radii < 100 = 1000 au

- orbital timescale: factor of 10° difference
between inner and outer disk

- temperature: >|000 K <~ |0 - 30 K
* |Inner | au is a puzzle because:

- Difficult to spatially resolve

- Physics is poorly understood (hot — dust
evaporates)

- Numerical modeling is challenging



Inner disk
Roughly < | au

Temperature is high enough to evaporate dust grains

Ener.gy is radiated in the U\/’ <Near-lRinterfero:netry»
Mid-IR inter
ViSibIe, and NIR Magnetospheric - I
accretion
. . Pure gas disk

Until recently, unresolved region = | M

(I au at 150 pc is 7 mas) 003aU | 0.1..1AU

SPeCtrOSCOP)’ gave hints abOUt UV continuum, Near-IR dust
H-recombination lines continuum

COmPIeX Stl"UCtU I"e and Near-IR continuum

. . . (origin unclear so far)

|ntereSt|ng PhYSlCS +atJomiclines(Br—y)

+ occasional molecular
lines (H,O, CO, OH)

Now: IR interferometry



Existence of disks!?

Presence of disks: for low- and intermediate mass stars,
it's now well established

Indicator for circumstellar material: IR excess

Outer part of the circumstellar material
is disk-like (direct imaging)

What about the inner (unresolved) part?

Can it be spherical? No, there is no

correlation between NIR excess
and Av



vF, (erg/s/cm?)

T Tauri and BD disks

 SED shape of T Tauri stars and BDs consistent
with flat or flared disk geometry
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NIR bump

* Herbig Ae/Be stars often show a NIR bump
* |HKL line up to form a ~1500 K blackbody
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| 500 K < dust sublimation

Most species of interstellar dust can survive until
1500 K

Reasonable assumption: NIR bump is due to
emission from dust grains on the brink of
evaporation

Dust dominates the opacity; gas is much less
optically thick (may even be optically thin /
transparent)

Consequence: the dust rim looks like an optically
thick “wall” seen from the inside



Inner disk structure

Proposal of Natta et al. (2001) and
Tuthill, Monnier & Danchi (2001):

Magnetospheric Rounded off dust inner rim:
accretion a dust chemical reactor

Accretion Dust-free inner
shock gas disk

¢

Optically Shadow cast Near-IR-emitting Weak shadow cast
thick gas (?) by the gas (?); surface of the by the dust rim (?)
a possible “safe dust inner rim
haven” for dust

Inner dust wall naturally explains the NIR bump



Puffed-up inner rim

Dust wall is puffed-up, because it is hotter —
vertical scale height is higher

Dullemond, Duminik & Natta (2001): complete
description of Herbig Ae/Be star SEDs in terms of
a simple irradiated disk model

Why do only Herbig stars show this feature!?

Lower luminosity, lower temperature — stellar
emission is at longer wavelengths, bump is
relatively weaker than in Herbig stars, but it is
there.
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Shadowing by puffed-up rim
in Herbig stars

Group I (flared disk) Group II (self-shadowed disk)

e Radiative diffusion is
Important

* Disk will never N

collapse completely — e oo )
Meeus et al. (2001) N
Dullemond & Dominik (2004) 0.1 1.0 iy 1000 10965



Dust rim: not vertical!

Vertical rim, 60° Vertical rim, 10° Round rim, 60° Round rim, 10°

all=

e No clear correlation between the NIR flux and the
disk inclination

* AB Aur:almost face-on, but has a huge NIR bump

e Solution: rounded rim



Evaporation/condensation

Complex process, depends not only on T

Depends also on the abundance of condensable
atoms in the gas phase (partial pressure)

For a given gas density, there is a critical Teyap:

- Above Tevap, Kama, Min & |
dust evaporates

- Below Teyap,
dust condensates st

optically thick disk

Rounded-off rim model J
of Isella & Natta (2005) e



Dust rim: not vertical!

Vertical rim, 60° Vertical rim, 10° Round rim, 60° Round rim, 10°

all=

e Spatially resolve the NIR emission from the rim?

e Difficult: | au < 7 mas (at the distance of Taurus)
* Needs NIR interferometry

* |Image reconstruction is now possible yet, model
fitting is needed



IR interferometry

* Challenging: so far only 2 telescope
(one baseline) or 3 telescopes (three
baselines) could be joined

* Past IR interferometers: Palomar
Testbed Interferometer (PTI), Keck
Interferometer; Infrared Optical
Telescope Array (IOTA); Infrared Spatial

Interferometer (IS1); Cambridge Optical
Aperture Synthesis Telescope (COAST)

* Current NIR interferometers: CHARA Vega

array’VLTl (Aufdenberg
et al. 2006)




IR interferometry

* |n most cases IR interferometry does not provide
images, model fitting is required to interpret the
visibilities

* Few exceptions: Vega, Altair (bright stellar disks)

A

North (milliarcseconds)

- - 2 1 0 -1 -2 .
East (milliarcseconds) East (milliarcseconds)  Monnier et al. (2007)



IR interferometry

Interpretation of interferometric observations:

Visibility at 1.65 pm
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Visbility (2.2 pm)
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Size-luminosity diagram
e |et’s fit the visibilities with a simple ring model

* This gives the radius of the inner rim for each system
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(Gas inward of the dust rim

The assumption of optically thin gas inward of the
rim is rather crude. Muzerolle et al. (2004): for low
accretion rates the gas is sufficiently transparent,
but for higher rates (>1078 Msyn/yr) the gas is
optically thick.

First question to clarify: gas opacities

Trim < T < Tstar :) Pure gas disk

Temperature is too low for continuum opacity
sources (like H™) except for tenuous surface layers

Billions of atomic and molecular lines!



(Gas inward of the dust rim
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(Gas inward of the dust rim

e Complex problem

e Opacity is high at line center, low between the
lines

e Opacity is low between 0.2-0.4 ym

* Molecules are easily destroyed (collisions, UV
photons)

e Usually, we assume local thermodynamic
eqUI|IbI"Ium (LTE), i.e.Tkin — Tex — Trad



Probing the inner dust-free
disk with gas line observations

Expectation: strong molecular emission
Observation: deficit of molecules

CO fundamental (Av=1) lines are commonly
found (formed in the surface layer between 0.

and 2 au, Najita et al. 2007)

CO overtone (Av=2) lines are rarer, excited at
>1000 K in the innermost part of the disk
(0.05-0.3 au)



CO fundamental lines
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Optical depth
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Normalised intensity
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CO overtone lines

Average spectrum T =3500 K N, =10%* cm™
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Gas inward of the dust rim

Magnetospheric Rounded off dust inner rim:
accretion a dust chemical reactor

Accretion Dust-free inner
shock gas disk

Optically Shadow cast Near-IR-emitting Weak shadow cast
thick gas (?) by the gas (?); surface of the by the dust rim (?)
a possible “safe dust inner rim
haven” for dust



Dynamics of the inner gas disk

Spectro-astrometry:

* Measure the centroid of
the image as a function
of wavelength/velocity

* |f S/N is good enough,
tiny sub-pixel shifts can
be observed

Velocity (km/s)



Dynamics of the inner gas disk
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Dynamics of the inner gas disk

* Where does the hydrogen emission come from!?

* Evidence for high-velocity gas farther from the star
than predicted by a Keplerian model
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Dynamics of the inner gas disk

L/ Funnel Flow
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Early models for accretion

Boundary layer - AR~ dvar=0

* Material must slow
down, radiate away

Lynden-Bell & Pringle (1974)  the energy



Early models for accretion

Magnetospheric accretion
* Stellar magnetic

field truncates
the disk

e Gas infall along
magnetic lines
at free-fall
velocities

Kamenzind (1990)
Konigl (1991)



Magnetospheric accretion

* High latitude accretion shocks

e X-ray/EUV radiation
immediately absorbed,
producing UV-optical
excess, consistent with
observations

* |[f accretion occurs in magnetic
“columns”, or if the magnetic (Romanova et al. 201 1)
axis is misaligned with the
rotation axis, photometric
changes appear



Magnetospheric accretion

Pros: it explains

hot spots rotating with the star
absence of emission from boundary layer)

slower rotation of stars with inner disks (due to
the disk torque communicated to the star by the
magnetic field)

emission line profiles of permitted lines (inverse P
Cygni redshifted absorption features)



Redshifted absorption
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Observations vs. model

Line radiative
transfer of
magnetospheric
infall can
reproduce
hydrogen line
profiles and line
fluxes
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Accretion rate from lines!?

e Ultimate goal: use emission lines to measure
accretion rate

e Complications:

- temperature and size of magnetosphere are
important factors

- Balmer lines and Br gamma are optically thick
(no dependence on gas density!)

- chromospheric activity also causes emission
lines



Accretion rate from continuum!?

UV continuum sl

excess \;
produced by :

E
©-95

IR continuum
excess

produced by
viscous
dissipation in
the disk

+

disk material "}
landing on the £ [}
stellar surface

-105

-11

re-processed
starlight



(Good accretion rate tracers

 U-band photometry

* HX line luminosity
e [OI1]6300 line luminosity

* Bry line luminosity
* Hx 10% width



(Good accretion rate tracers

 U-band photometry

(Gullbring et al. 1998)

log(Ly/Lg)

log (Lyeo/Lo) = 1097 8:9% log (Ly/Lo) + 0.987 552

accC



(Good accretion rate tracers

* HX line luminosity
e [OI1]6300 line luminosity

* Bry line luminosity
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(Good accretion rate tracers

* HX line luminosity

e [OI1]6300 line luminosity

* Bry line luminosity
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(Good accretion rate tracers
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Variability of accretion in
Herbig stars

Mendigutia et al. (201 1):

 Multi-epoch Balmer excesses
* Multi-epoch HX and [OI]6300 luminosities

* Most stars show constant Balmer excess (within the
uncertainties); variation < 0.2 mag — factor of <5 in

M aCC

* Two most extreme cases:
V1686 Cyg: Balmer excess changed from 0.04 mag to

0.18 mag — implies an accretion rate change of a factor
<5

WW Vul: Balmer excess changed from 0.14 mag to 0.04
mag — implies a accretion rate change of a factor < 4



Variability of accretion in

1 Tauri stars

10 |
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16 |

Eruptive phenomenon:

5 mag optical outburst
due to several orders

of magnitude increase

in the accretion rate

To be continued...
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Further reading

L. Hartmann, G. Herczeg, N. Calvet
Annu. Rev.Astron. Astrophys. 2016, 54:135—180
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